No CrossRef data available.
Published online by Cambridge University Press: 18 April 2013
The relative realisability toposes introduced by Awodey, Birkedal and Scott in Awodey et al. (2002) satisfy a universal property involving regular functors to other categories. We use this universal property to define what relative realisability categories are when they are based on categories other than the topos of sets. This paper explains the property and gives a construction for relative realisability categories that works for arbitrary base Heyting categories. The universal property also provides some new geometric morphisms to relative realisability toposes.