Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T15:06:47.939Z Has data issue: false hasContentIssue false

A quantum double construction in Rel

Published online by Cambridge University Press:  18 May 2012

MASAHITO HASEGAWA*
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan Email: [email protected]

Abstract

We study bialgebras and Hopf algebras in the compact closed category Rel of sets and binary relations. Various monoidal categories with extra structure arise as the categories of (co)modules of bialgebras and Hopf algebras in Rel. In particular, for any group G, we derive a ribbon category of crossed G-sets as the category of modules of a Hopf algebra in Rel that is obtained by the quantum double construction. This category of crossed G-sets serves as a model of the braided variant of propositional linear logic.

Type
Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S., Blute, R. and Panangaden, P. (1999) Nuclear and trace ideals in tensored *-categories. Journal of Pure and Applied Algebra 143 347.CrossRefGoogle Scholar
Abramsky, S. and Coecke, B. (2004) A categorical semantics of quantum protocols. In: Proceedings 19th IEEE Symposium on Logic in Computer Science 415–425.CrossRefGoogle Scholar
Abramsky, S., Haghverdi, E. and Scott, P. J. (2002) Geometry of Interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12 625665.CrossRefGoogle Scholar
Bakalov, B. and Kirilov, A. (2001) Lectures on Tensor Categories and Modular Functors, University Lecture Series 21, American Mathematical Society.Google Scholar
Barr, M. (1995) Nonsymmetric *-autonomous categories. Theoretical Computer Science 139 115130.CrossRefGoogle Scholar
Bellin, G. and Fleury, A. (1998) Planar and braided proof-nets for multiplicative linear logic with mix. Archive for Mathematical Logic 37 309325.CrossRefGoogle Scholar
Bloom, S. and Ésik, Z. (1993) Iteration Theories, EATCS Monographs on Theoretical Computer Science, Springer-Verlag.CrossRefGoogle Scholar
Blute, R. (1996) Hopf algebras and linear logic. Mathematical Structures in Computer Science 6 189217.CrossRefGoogle Scholar
Bruguieres, A. and Virelizier, A. (2007) Hopf monads. Advances in Mathematics 215 679733.CrossRefGoogle Scholar
Chen, H.-X. (2000) Quantum doubles in monoidal categories. Communications in Algebra 28 23032328.CrossRefGoogle Scholar
Cockett, J. R. B. and Seely, R. A. G. (1997) Weakly distributive categories. Journal of Pure and Applied Algebra 114 133173.CrossRefGoogle Scholar
Drinfel'd, V. G. (1987) Quantum groups. In: Proceedings 1986 International Congress of Mathematicians, Berkley 1 798820.Google Scholar
Fenn, R. and Rourke, C. (1992) Racks and links in codimension two. Journal Knot Theory Ramifications 1 343406.CrossRefGoogle Scholar
Freedman, M. H., Kitaev, A. and Wang, Z. (2002) Simulation of topological field theories by quantum computers. Communications in Mathematical Physics 227 587603.CrossRefGoogle Scholar
Freyd, P. and Yetter, D. N. (1989) Braided compact closed categories with applications to low dimensional topology. Advances in Mathematics 77 156182.CrossRefGoogle Scholar
Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1102.CrossRefGoogle Scholar
Girard, J.-Y. (1989) Geometry of Interaction I: interpretation of system F. In: Proceedings Logic Colloquium '88 221–260.CrossRefGoogle Scholar
Haghverdi, E. and Scott, P. J. (2011) Geometry of Interaction and the dynamics of proof reduction: a tutorial. In: New Structures for Physics. Springer-Verlag Lecture Notes in Computer Science 813 357417.Google Scholar
Hasegawa, M. (1999) Models of Sharing Graphs: A Categorical Semantics of let and letrec, Distinguished Dissertations Series, Springer-Verlag.CrossRefGoogle Scholar
Hasegawa, M. (2009) On traced monoidal closed categories. Mathematical Structures in Computer Science 19 217244.CrossRefGoogle Scholar
Hasegawa, M. (2010) Bialgebras in Rel. In: Proceedings Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science 265 337359.CrossRefGoogle Scholar
Hasegawa, R. (2002) Two applications of analytic functors. Theoretical Computer Science 272 113175.CrossRefGoogle Scholar
Hildebrandt, T. T., Panangaden, P. and Winskel, G. (2004) A relational model of non-deterministic dataflow. Mathematical Structures in Computer Science 14 613649.CrossRefGoogle Scholar
Hyland, J. M. E. and Schalk, A. (2003) Glueing and orthogonality for models of linear logic. Theoretical Computer Science 294 183231.CrossRefGoogle Scholar
Joyal, A. (1977) Remarques sur la théorie des jeux à deux personnes. Gazette des Sciences Mathématiques du Québec 1 4652.Google Scholar
Joyal, A. and Street, R. (1991) The geometry of tensor calculus, I. Advances in Mathematics 88 55113.CrossRefGoogle Scholar
Joyal, A. and Street, R. (1993) Braided tensor categories. Advances in Mathematics 102 2078.CrossRefGoogle Scholar
Joyal, A., Street, R. and Verity, D. (1996) Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119 447468.CrossRefGoogle Scholar
Joyce, D. (1982) A classifying invariant of knots, the knot quandle. Journal of Pure and Applied Algebra 23 3765.CrossRefGoogle Scholar
Kassel, C. (1995) Quantum Groups, Graduate Texts in Mathematics 155, Springer-Verlag.CrossRefGoogle Scholar
Kassel, C. and Turaev, V. G. (1995) Double construction for monoidal categories. Acta Mathematica 175 148.CrossRefGoogle Scholar
Katsumata, S. (2008) Attribute grammars and categorical semantics, In: Proceedings International Colloquium on Automata, Languages and Programming. Springer-Verlag Lecture Notes in Computer Science 5126 271282.CrossRefGoogle Scholar
Kelly, G. M. and Laplaza, M. L. (1980) Coherence for compact closed categories. Journal of Pure and Applied Algebra 19 193213.CrossRefGoogle Scholar
Kitaev, A. (2003) Fault-tolerant quantum computation by anyons. Annals of Physics 303 320.CrossRefGoogle Scholar
Mac Lane, S. (1971) Categories for the Working Mathematician, Graduate Texts in Mathematics 5, Springer-Verlag.CrossRefGoogle Scholar
Majid, S. (1990) Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction. Journal of Algebra 130 1764.CrossRefGoogle Scholar
Majid, S. (1994) Algebras and Hopf algebras in braided categories. In: Advances in Hopf Algebras, Lecture Notes in Pure and Applied Mathematics 158, Marcel Dekker 55105.Google Scholar
Majid, S. (1995) Foundations of Quantum Group Theory, Cambridge University Press.CrossRefGoogle Scholar
Melliès, P.-A. (2004) Asynchronous games 3: an innocent model of linear logic. In: Proceedings Category Theory and Computer Science. Electronic Notes in Theoretical Computer Science 122 171192.CrossRefGoogle Scholar
Melliès, P.-A. (2009) Categorical semantics of linear logic. In: Interactive Models of Computation and Program Behaviour, Panoramas et Synthèses 27, Société Mathématique de France 1196.Google Scholar
Panangaden, P. and Paquette, É. O. (2011) A categorical presentation of quantum computation with anyons. In: New Structures for Physics. Springer-Verlag Lecture Notes in Computer Science 813 9831025.Google Scholar
Pastro, C. and Street, R. (2009) Closed categories, star-autonomy, and monoidal comonads. Journal of Algebra 321 34943520.CrossRefGoogle Scholar
Selinger, P. (2011) A survey of graphical languages for monoidal categories. In: New Structures for Physics. Springer-Verlag Lecture Notes in Computer Science 813 289355.Google Scholar
Shum, M.-C. (1994) Tortile tensor categories. Journal of Pure and Applied Algebra 93 57110.CrossRefGoogle Scholar
Ştefǎnescu, G. (2000) Network Algebra, Series in Discrete Mathematics and Theoretical Computer Science, Springer-Verlag.CrossRefGoogle Scholar
Street, R. (2007) Quantum Groups: A Path to Current Algebra, Australian Mathematical Society Lecture Series 19, Cambridge University Press.CrossRefGoogle Scholar
Takeuchi, M. (1971) Free Hopf algebras generated by coalgebras. Journal of the Mathematical Society of Japan 23 561582.CrossRefGoogle Scholar
Takeuchi, M. (1999) Finite Hopf algebras in braided tensor categories. Journal of Pure and Applied Algebra 138 5982.CrossRefGoogle Scholar
Turaev, V. G. (1994) Quantum Invariants of Knots and 3-Manifolds, de Gruyter.CrossRefGoogle Scholar
Wang, Z. (2010) Topological Quantum Computation, CBMS Regional Conference Series in Mathematics 112, American Mathematical Society.CrossRefGoogle Scholar
Whitehead, J. H. C. (1949) Combinatorial homotopy, II. Bulletin of the American Mathematical Society 55 453496.CrossRefGoogle Scholar
Yetter, D. N. (2001) Functorial Knot Theory, World Scientific.CrossRefGoogle Scholar