Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T15:01:00.997Z Has data issue: false hasContentIssue false

Process discovery and Petri nets

Published online by Cambridge University Press:  04 December 2009

NADIA BUSI
Affiliation:
Dipartimento di Scienze dell'Informazione, Università di Bologna, Italy
G. MICHELE PINNA
Affiliation:
Dipartimento di Matematica e Informatica, Università di Cagliari, Italy Email: [email protected]

Abstract

The aim of the research domain known as process mining is to use process discovery to construct a process model as an abstract representation of event logs. The goal is to build a model (in terms of a Petri net) that can reproduce the logs under consideration, and does not allow different behaviours compared with those shown in the logs. In particular, process mining aims to verify the accuracy of the model design (represented as a Petri net), basically checking whether the same net can be rediscovered. However, the main mining methods proposed in the literature have some drawbacks: the classical α-algorithm is unable to rediscover various nets, while the region-based approach, which can mine them correctly, is too complex.

In this paper, we compare different approaches and propose some ideas to counter the weaknesses of the region-based approach.

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van der Aalst, W. M. P. (2004) Business process management demystified: A tutorial on models, systems and standards for workflow management. In: Desel, J., Reisig, W. and Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. Springer-Verlag Lecture Notes in Computer Science 3098 165.CrossRefGoogle Scholar
van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G. and Weijters, A. J. M. M. (2003) Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47 (2)237267.CrossRefGoogle Scholar
van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Dongen, B. F., Kindler, E. and Günther, C. W. (2008) Process mining: A two-step approach to balance between underfitting and overfitting. Technical Report BPM-08-01, BPM Center.CrossRefGoogle Scholar
van der Aalst, W. M. P. and Weijters, A. J. M. M. (2004) Process Mining. Computers in Industry (Special Issue) 53 (3).CrossRefGoogle Scholar
van der Aalst, W. M. P., Weijters, T. and Maruster, L. (2004) Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16 (9)11281142.CrossRefGoogle Scholar
Badouel, E. and Darondeau, P. (1995) Trace nets and process automata. Acta Informatica 32 647679.CrossRefGoogle Scholar
Badouel, E. and Darondeau, P. (1998) Theory of regions. In: Reisig, W. and Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models, Advances in Petri Nets. Springer-Verlag Lecture Notes in Computer Science 1491 529586.CrossRefGoogle Scholar
Bernardinello, L. (1993) Synthesis of net systems. In: Ajmone, Marsan M. (ed.) Proceedings of the 14th Conference on the Application and Theory of Petri Nets. Springer-Verlag Lecture Notes in Computer Science 691 89105.CrossRefGoogle Scholar
Bernardinello, L., De Michelis, G., Petruni, K. and Vigna, S. (1996) On the synchronic structure of transition systems. In: Desel, J. (ed.) Structure in Concurrency Theory, Springer Verlag 1131.Google Scholar
Bruni, R. and Montanari, U. (2001) Transactions and zero-safe nets. In: Ehrig, H., Juhásm, G., Padberg, J. and Rozenberg, G. (eds.) Unifying Petri Nets, Advances in Petri Nets. Springer-Verlag Lecture Notes in Computer Science 2128 380426.CrossRefGoogle Scholar
Busi, N. and Pinna, G. M. (1997) Synthesis of nets with inhibitor arcs. In: Mazurkiewicz, A. and Winkowski, J. (eds.) CONCUR'97 Conference Proceedings. Springer-Verlag Lecture Notes in Computer Science 1243 151165.CrossRefGoogle Scholar
Busi, N. and Pinna, G. M. (1998) Transition systems and elementary net systems (manuscript).Google Scholar
Busi, N. and Pinna, G. M. (2006a) Characterizing workflow nets using regions. In: SYNASC 2006, IEEE Computer Society 399406.Google Scholar
Busi, N. and Pinna, G. M. (2006b) Region-based workflow mining: a feasibility analysis (manuscript).Google Scholar
Cabasino, M. P., Giua, A. and Seatzu, C. (2006a) Identification of deterministic Petri nets. In: WODES '06: 8th Workshop on Discrete Event Systems 32–331.CrossRefGoogle Scholar
Cabasino, M. P., Giua, A. and Seatzu, C. (2006b) Identification of unbounded Petri nets from their coverability graph. In: CDC06: 45th IEEE Conference on Decision and Control 434–440.CrossRefGoogle Scholar
Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, K. and Yakovlev, A. (2008) A symbolic algorithm for the synthesis of bounded Petri nets. In: van Hee, K. and Valk, R. (eds.) Proceedings of 29th International Conference on the Applications and Theory of Petri Nets. Springer-Verlag Lecture Notes in Computer Science 5062 92111.CrossRefGoogle Scholar
Cortadella, J., Kishinevsky, M., Lavagno, K. and Yakovlev, A. (1998) Deriving Petri nets for finite transition systems. IEEE Trans. Computers 47 (8)859882.CrossRefGoogle Scholar
Darondeau, P. (1998) Deriving unbounded Petri nets from formal languages. In: Sangiorgi, D. and de Simone, R. (eds.) CONCUR '98. Springer-Verlag Lecture Notes in Computer Science 1466 533548.CrossRefGoogle Scholar
Darondeau, P. (2008) On the synthesis of zero-safe nets. In: Degano, P., De Nicola, R. and Meseguer, J. (eds.) Concurrency, Graphs and Models. Springer-Verlag Lecture Notes in Computer Science 5065 409426.CrossRefGoogle Scholar
Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M. and Yakovlev, A. (2008) Synthesis of nets with step firing policies. In: van Hee, K. and Valk, R. (eds.) Proceedings of 29th International Conference on the Applications and Theory of Petri Nets. Springer-Verlag Lecture Notes in Computer Science 5062 112131.CrossRefGoogle Scholar
Desel, J. and Esparza, J. (1995) Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer Science 40, Cambridge University Press.CrossRefGoogle Scholar
Desel, J. and Reisig, W. (1996) The synthesis problem of Petri nets. Acta Informatica 33 296315.CrossRefGoogle Scholar
van Dongen, B. F., Busi, N., Pinna, G. M. and van der Aalst, W. M. P. (2007) An iterative algorithm for applying the theory of regions in process mining. In: Reisig, W., van Hee, K. and Wolf, K. (eds.) Proceedings of the Workshop on Formal Approaches to Business Processes and Web Services (FABPWS'07) 36–55.Google Scholar
van Dongen, B. F., de Medeiros, A. K. A., Verbeeki, H. M. W., Weijters, A. J. M. M. and van der Aalst, W. M. P. (2005) The ProM framework: A new era in process mining tool support. In: Ciardo, G. and Darondeau, P. (eds.) Applications and Theory of Petri Nets 2005, 26th International Conference, ICATPN 2005. Springer-Verlag Lecture Notes in Computer Science 3536 444454.CrossRefGoogle Scholar
Ehrenfeucht, A. and Rozenberg, G. (1989) Partial (set) 2-structures. Part I: Basic notions and the representation problem. Part II: State spaces of concurrent systems. Acta Informatica 27 (4)315368.CrossRefGoogle Scholar
Giua, A. and Seatzu, C. (2005) Identification of free-labeled Petri nets via integer programming. In: CDC05: 44th IEEE Conference on Decision and Control 7639–7644.CrossRefGoogle Scholar
Gorgônio, K. C., Cortadella, J., Xia, F. and Yakovlev, A. (2007) Automating synthesis of asynchronous communication mechanisms. Fundamenta Informaticae 78 (1)75100.Google Scholar
IDS Scheer (2002) ARIS Process Performance Manager (ARIS PPM): Measure, Analyze and Optimize Your Business Process Performance (whitepaper), IDS Scheer, Saarbruecken, Gemany.Google Scholar
Keller, G. and Teufel, T. (1998) SAP R/3 Process Oriented Implementation, Addison-Wesley.Google Scholar
Lorenz, R., Bergenthum, R., Desel, J. and Mauser, S. (2007) Synthesis of Petri nets from finite partial languages. In: Basten, T., Juhás, G. and Shukla, S. K. (eds.) Proceedings of ACSD 2007 157–166.Google Scholar
Lorenz, R. and Juhás, G. (2007) How to synthesize nets from languages – a survey. In: Proceedings of the 2007 Winter Simulation Conference 637–647.CrossRefGoogle Scholar
de Medeiros, A. K. A., van der Aalst, W. M. P. and Weijters, A. J. M. M. (2003) Workflow mining: Current status and future directions. In: Meersman, R., Tari, Z. and Schmidt, D. C. (eds.) On The Move to Meaningful Internet Systems 2003: OTM 2003 Workshops. Springer-Verlag Lecture Notes in Computer Science 2888 389406.CrossRefGoogle Scholar
Mukund, M. (1992) Petri nets and step transition systems. International Journal on Foundation of Computing Science 3 (4)443478.CrossRefGoogle Scholar
Reisig, W. and Rozenberg, G. (eds.) (1998) Lectures on Petri Nets I: Basic Models. Springer-Verlag Lecture Notes in Computer Science 1491.Google Scholar
Wohed, P., van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M. and Russell, N. (2005) Pattern-based analysis of the control-flow perspective of uml activity diagrams. In: Delcambre, L. M. L., Kop, C., Mayr, H. C., Mylopoulos, J. and Pastor, O. (eds.) ER 2005. Springer-Verlag Lecture Notes in Computer Science 3716 6378.CrossRefGoogle Scholar