Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T15:36:58.271Z Has data issue: false hasContentIssue false

Preserving cardinals and weak forms of Zorn’s lemma in realizability models

Published online by Cambridge University Press:  10 February 2021

Laura Fontanella*
Affiliation:
Institut de Mathématiques de Marseille, Aix-Marseille Université, 163 Av. de Luminy, 13009Marseille, France
Guillaume Geoffroy
Affiliation:
Institut de Mathématiques de Marseille, Aix-Marseille Université, 163 Av. de Luminy, 13009Marseille, France
*
*Corresponding author. Email: [email protected]

Abstract

We develop a technique for representing and preserving cardinals in realizability models, and we apply this technique to define a realizability model of Zorn’s lemma restricted to an ordinal.

Type
Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Geoffroy, G. (2018). Réalisabilité classique: nouveaux outils et applications. Phd thesis.Google Scholar
Jech, T. J. (2003). Set Theory: The Third Millennium Edition, Berlin, Springer.Google Scholar
Jech, T. J. (1973). The Axiom of Choice, North-Holland, Amsterdam.Google Scholar
Krivine, J.-L. (2011). Realizability algebras: a program to well order R. Logical Methods in Computer Science 7 (3:02) 147.CrossRefGoogle Scholar
Krivine, J.-L. (2012). Realizability algebras II: new models of ZF + DC. Logical Methods in Computer Science 8 (1:10) 128.CrossRefGoogle Scholar
Krivine, J.-L. (2015). On the structure of classical realizability models of ZF. In: Proceedings of TYPES-2014 - LIPIcs, vol. 39, 146161.Google Scholar
Krivine, J.-L. (2018). Realizability algebras III: some examples. Mathematical Structures in Computer Science 28 (1) 4576.CrossRefGoogle Scholar
Kunen, K. (1980). Set theory: An Introduction to Independence Proofs, North-Holland, Amsterdam.Google Scholar
Rubin, H. and Rubin, J. E. (1985). Equivalents of the Axiom of Choice II, North-Holland, Amsterdam.Google Scholar
Sørensen, M. H. B. and Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism, 1st edn., vol. 149, Amsterdam, Elsevier Science.Google Scholar