Article contents
Integral categories and calculus categories
Published online by Cambridge University Press: 05 February 2018
Abstract
Differential categories are now an established abstract setting for differentiation. However, not much attention has been given to the process which is inverse to differentiation: integration. This paper presents the parallel development for integration by axiomatizing an integral transformation, sA: !A → !A ⊗ A, in a symmetric monoidal category with a coalgebra modality. When integration is combined with differentiation, the two fundamental theorems of calculus are expected to hold (in a suitable sense): a differential category with integration which satisfies these two theorems is called a calculus category.
Modifying an approach to antiderivatives by T. Ehrhard, we define having antiderivatives as the demand that a certain natural transformation, K: !A → !A, is invertible. We observe that a differential category having antiderivatives, in this sense, is always a calculus category.
When the coalgebra modality is monoidal, it is natural to demand an extra coherence between integration and the coalgebra modality. In the presence of this extra coherence, we show that a calculus category with a monoidal coalgebra modality has its integral transformation given by antiderivatives and, thus, that the integral structure is uniquely determined by the differential structure.
The paper finishes by providing a suite of separating examples. Examples of differential categories, integral categories and calculus categories based on both monoidal and (mere) coalgebra modalities are presented. In addition, differential categories which are not integral categories are discussed and vice versa.
- Type
- Paper
- Information
- Copyright
- Copyright © Cambridge University Press 2018
References
- 7
- Cited by