Article contents
Infinitary affine proofs
Published online by Cambridge University Press: 07 July 2015
Abstract
Even though the multiplicative–additive fragment of linear logic forbids structural rules in general, is does admit a bounded form of exponential modalities enjoying a bounded form of structural rules. The approximation theorem, originally proved by Girard, states that if full linear logic proves a propositional formula, then the multiplicative–additive fragment proves every bounded approximation of it. This may be understood as the fact that multiplicative–additive linear logic is somehow dense in full linear logic. Our goal is to give a technical formulation of this informal remark. We introduce a Cauchy-complete space of infinitary affine term-proofs and we show that it yields a fully complete model of multiplicative exponential polarised linear logic, in the style of Girard's ludics. Moreover, the subspace of finite term-proofs, which is a model of multiplicative polarised linear logic, is dense in the space of all term-proofs.
- Type
- Paper
- Information
- Copyright
- Copyright © Cambridge University Press 2015
References
- 2
- Cited by