Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T12:59:36.720Z Has data issue: false hasContentIssue false

Entanglement and Hilbert space geometry for systems with a few qubits

Published online by Cambridge University Press:  01 December 2007

REMY MOSSERI
Affiliation:
Laboratoire de Physique Théorique de la Matire Condense, CNRS UMR 7600, Université Pierre et Marie Curie Paris 6, Tour 24, Boite 121, 4 place Jussieu, 75252 Paris Cedex 05France Email: [email protected]@lptmc.jussieu.fr
PEDRO RIBEIRO
Affiliation:
Laboratoire de Physique Théorique de la Matire Condense, CNRS UMR 7600, Université Pierre et Marie Curie Paris 6, Tour 24, Boite 121, 4 place Jussieu, 75252 Paris Cedex 05France Email: [email protected]@lptmc.jussieu.fr

Abstract

This paper reviews recent attempts to describe the two- and three-qubit Hilbert space geometries. In the first part, this is done with the help of Hopf fibrations of hyperspheres. It is shown that the associated Hopf map is strongly sensitive to states’ entanglement content. In the two-qubit case, a generalisation of the celebrated one-qubit Bloch sphere representation is described. In the second part, we present Hilbert space discrete versions, which are comparable to polyhedral approximations of spheres in standard geometry.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernevig, B. A. and Chen, H.-D. (2003) J. Phys. A 36 8325.Google Scholar
Bouwmeester, D., Eckert, A. and Zeilinger, A. (2000) The Physics of Quantum Information, Springer-Verlag.CrossRefGoogle Scholar
Coffman, V., Kundu, J. and Wootters, W. (2000) Phys. Rev. A 61 52306.CrossRefGoogle Scholar
Conway, J. H. and Sloane, N. J. A. (1988) Sphere Packings, Lattices and Groups, Springer-Verlag.CrossRefGoogle Scholar
Coxeter, H. S. M. (1973) Regular Polytopes, Dover.Google Scholar
Kempe, J. (1999) Phys. Rev. A 60 910.Google Scholar
Kus, M. and Zyczkowski, K. (2001) Phys. Rev A. 63 032307.CrossRefGoogle Scholar
Leech, J. (1964) Canad. J. Math. 16 657682.Google Scholar
Levay, P. (2004) J. Phys. A 37 18211842.CrossRefGoogle Scholar
Manton, N. S. (1987) Comm. Math. Phys. 113 341351.CrossRefGoogle Scholar
Mosseri, R. (2000) Two-qubit and Three-qubit Geometry and Hopf Fibrations. In: Monastyrsky, M. I. (ed.) Topology in Condensed Matter. Springer Series in Solid-State Physics 150 187203. (Also available at quant-ph/0310053.)CrossRefGoogle Scholar
Mosseri, R. and Dandoloff, R. (2001) J. Phys. A 34 1024310252.Google Scholar
Nielsen, M. A. and Chuang, I. L. (2000) Quantum Information and Quantum Computation, Cambridge University Press.Google Scholar
Rigetti, C., Mosseri, R. and Devoret, M. (2004) Geometric Approach to Digital Quantum Information. Quantum Information Processing 3 (6)351380. (Also available at quant-ph/0312196.)CrossRefGoogle Scholar
Sadoc, J. F. and Mosseri, R. (1993) J. Phys. A 26 1789–189.Google Scholar
Sadoc, J. F. and Mosseri, R. (1999) Geometric Frustration, Cambridge University Press.Google Scholar
Urbanke, H. (1991) American Journal of Physics 59 53.Google Scholar
Wootters, W. K. (1998) Phys. Rev. Lett. 80 2245.Google Scholar