Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-19T01:24:41.903Z Has data issue: false hasContentIssue false

A computationally adequate model for overloading via domain-valued functors

Published online by Cambridge University Press:  01 August 1998

HIDEKI TSUIKI
Affiliation:
Department of Fundamental Science, Kyoto University, Yoshida-Nihonmatsu, Sakyo-ku 606-8316, Kyoto, Japan. Email: [email protected]

Abstract

We give a denotational semantics to a calculus λ[otimes ] with overloading and subtyping. In λ[otimes ], the interaction between overloading and subtyping causes self application, and non-normalizing terms exist for each type. Moreover, the semantics of a type depends not on that type alone, but also on infinitely many others. Thus, we need to consider infinitely many domains, which are related by an infinite number of mutually recursive equations. We solve this by considering a functor category from the poset of types modulo equivalence to a category in which each type is interpreted. We introduce a categorical constructor corresponding to overloading, and formalize the equations as a single equation in the functor category. A semantics of λ[otimes ] is then expressed in terms of the minimal solution of this equation. We prove the adequacy theorem for λ[otimes ] following the construction in Pitts (1994) and use it to derive some syntactic properties.

Type
Research Article
Copyright
1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)