The groups of rotations that transform the regular polygons and polyhedra into themselves have. been studied for many years. Lately, increasing interest has been shown in the “extended” groups, which include reflections (and other congruent transformations of negative determinant). Todd has proved that every such group can be defined abstractly in the form
This group is denoted by [k1, k2, …, kn−1], and is the complete (extended) group of symmetries of either of the reciprocal n.-dimensional polytopes {k1, k2,…, kn−1}, {kn−1, kn−2,…, k1}. There is a sense in which these statements hold for arbitrarily large values of the k's. But here we are concerned only with the cases where the groups and the polytopes are finite. The finite groups are
[k] is simply isomorphic with the dihedral group of order 2k (e.g. [2], the Vierergruppe). [3, 3,…, 3] with n − 1 threes, or briefly [3n−1], is simply isomorphic with the symmetric group of order (n + 1)!.