In a recent paper I discussed plane congruences of order two in [4] and obtained congruences of types (2, 6)1, (2, 6)2, (2, 5), (2, 4) and (2, 3). The method employed was due to Segre, who showed that a plane congruence of order two in [4] has in general a curve locus of singular points which is met by each plane in five points. Then, if we can find a curve in [4], composite or not, with an ∞2 system of quadrisecant planes of which two pass through an arbitrary point, the planes must all meet a residual curve, and we shall have obtained a congruence of the second order and a fifth incidence theorem.