Let X1, …, Xn be independent Bernoulli random variables, and let pi = P[Xi = 1], λ = Σi=1n pi and Σi=1n Xi. Successively improved estimates of the total variation distance between the distribution ℒ(W) of W and a Poisson distribution Pλ with mean λ have been obtained by Prohorov[5], Le Cam [4], Kerstan[3], Vervaat[8], Chen [2], Serfling[7] and Romanowska[6]. Prohorov, Vervaat and Romanowska discussed only the case of identically distributed Xi's, whereas Chen and Serfling were primarily interested in more general, dependent sequences. Under the present hypotheses, the following inequalities, here expressed in terms of the total variation distance
were established respectively by Le Cam, Kerstan and Chen:
(Kerstan's published estimate of ([3], p.174, equation (1)) is a misprint for , the constant 2·1 appearing twice on p. 175 of his paper.) Here, we use Chen's [2] elegant adaptation of Stein's method to improve hte estimates given in (1·1), and we complement these estimates with a reverse inequality expressed in similar terms. Second order estimates, and the case of more general non-negative integer valued X's, are also discussed.