Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T22:42:26.106Z Has data issue: false hasContentIssue false

Zeros of random polynomials over finite fields

Published online by Cambridge University Press:  24 October 2008

R. W. K. Odoni
Affiliation:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland

Extract

Let be the finite field with q elements (q a prime power), let r 1 and let X1, , Xr be independent indeterminates over . We choose an arbitrary and a d 1 and consider

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Atiyah, M. F. and MacDonald, I. G.. Introduction to Commutative Algebra (Addison-Wesley, 1969).Google Scholar
2Deligne, P.. Les intersections compltes de niveau de Hodge un. Invent. Math. 15 (1972), 237250.CrossRefGoogle Scholar
3Feller, W.. An Introduction to Probability Theory and its Applications, vol. 2 (J. Wiley and Sons, 1966).Google Scholar
4Odoni, R. W. K.. The statistics of Weil's trigonometric sums. Proc. Cambridge Philos. Soc. 74 (1973), 467471.CrossRefGoogle Scholar
5Odoni, R. W. K.. Trigonometric sums of Heilbronn's type. Math. Proc. Cambridge Philos. Soc. 98 (1985), 389396.CrossRefGoogle Scholar
6Odoni, R. W. K.. A note on trigonometric sums in several variables. Math. Proc. Cambridge Philos. Soc. 99 (1986), 189193.CrossRefGoogle Scholar