Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T04:40:38.024Z Has data issue: false hasContentIssue false

A zero density estimate and fractional imaginary parts of zeros for $\textrm{GL}_2$ L-functions

Published online by Cambridge University Press:  28 December 2022

OLIVIA BECKWITH
Affiliation:
Mathematics Department, Tulane University, New Orleans, 6823 St. Charles Ave., LA 70118, U.S.A. e-mail: [email protected]
DI LIU
Affiliation:
Department of Mathematics, University of Illinois at Urbana–Champaign, 1409 West Green Street, Urbana, IL 61801, U.S.A. e-mails: [email protected], [email protected]
JESSE THORNER
Affiliation:
Department of Mathematics, University of Illinois at Urbana–Champaign, 1409 West Green Street, Urbana, IL 61801, U.S.A. e-mails: [email protected], [email protected]
ALEXANDRU ZAHARESCU
Affiliation:
Department of Mathematics, University of Illinois at Urbana–Champaign, 1409 West Green Street, Urbana, IL 61801, U.S.A. and Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

We prove an analogue of Selberg’s zero density estimate for $\zeta(s)$ that holds for any $\textrm{GL}_2$ L-function. We use this estimate to study the distribution of the vector of fractional parts of $\gamma\boldsymbol{\alpha}$ , where $\boldsymbol{\alpha}\in\mathbb{R}^n$ is fixed and $\gamma$ varies over the imaginary parts of the nontrivial zeros of a $\textrm{GL}_2$ L-function.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

1. Introduction and statement of results

1·1. Main results

Let $\zeta(s)$ be the Riemann zeta function, and let $N(\sigma,T)$ denote the number of zeros $\beta+i\gamma$ of $\zeta(s)$ with $\beta\geq\sigma\geq 0$ and $|\gamma|\leq T$ . The asymptotic

(1·1) \begin{equation} N(T)\;:\!=\; N(0,T)\sim (1/\pi)T\log T\end{equation}

follows from the argument principle. The Riemann hypothesis (RH) asserts that $\zeta(s)\neq 0$ for $\textrm{Re}(s)>{1}/{2}$ , so $N(\sigma,T)=0$ for $\sigma>{1}/{2}$ . Selberg [ Reference TitchmarshTit86 , theorem 9·19C] proved a delicate zero density estimate that recovers the upper bound in (1·1) at $\sigma={1}/{2}$ , namely

(1·2) \begin{equation} N(\sigma,T)\ll T^{1-\frac{1}{4}(\sigma-\frac{1}{2})}\log T,\qquad \sigma\geq \tfrac{1}{2}.\end{equation}

(See Baluyot [ Reference Alan and BaluyotBal17 , theorem 1·2·1] for an improvement.) Selberg’s estimate implies that

\begin{equation*}\frac{1}{N(T)}\#\Big\{\rho=\beta+i\gamma\colon \zeta(\rho)=0,\;|\gamma|\leq T,\;\beta\in\Big[\frac{1}{2}-\frac{4\log\log T}{\log T},\frac{1}{2} +\frac{4\log\log T}{\log T}\Big]\Big\}\ll \frac{1}{\log T}.\end{equation*}

As an application of (1·2), Selberg proved a central limit theorem for $\log|\zeta({1}/{2}+it)|$ :

(1·3) \begin{equation}\lim_{T\to\infty}\frac{1}{T}{\text{meas}}\Big\{T\leq t\leq 2T\colon \log|\zeta(\tfrac{1}{2}+it)| \geq V\sqrt{\tfrac{1}{2}\log\log T}\Big\}\sim\frac{1}{\sqrt{2\pi}}\int_V^{\infty}e^{-u^2/2}du.\end{equation}

Let $\mathscr{A}$ be the set of cuspidal automorphic representations of $\textrm{GL}_2$ over $\mathbb{Q}$ with unitary central character. For $\pi\in\mathscr{A}$ , let $L(s,\pi)$ be its standard L-function. Define

\begin{equation*} N_{\pi}(\sigma,T)\;:\!=\;\#\{\rho=\beta+i\gamma\colon \beta\geq\sigma,\;|\gamma|\leq T,\;L(\rho,\pi)=0\}.\end{equation*}

As with $\zeta(s)$ , the argument principle can be used to prove that

(1·4) \begin{equation} N_{\pi}(T)\;:\!=\; N_{\pi}(0,T)\sim (2/\pi)T\log T.\end{equation}

The generalised Riemann hypothesis (GRH) asserts that $L(s, \pi) \neq 0$ for $\textrm{Re}(s) > {1}/{2}$ . Jutila [ Reference JutilaJut83 ] and Selberg [ Reference SelbergSel92 ] observed that analogues of (1·2) and (1·3) should also hold for Hecke–Maaß newforms. When $\pi \in \mathscr{A}$ corresponds with a holomorphic cuspidal newform of even weight $k \geq 2$ , Luo [ Reference LuoLuo95 , theorem 1·1] and Li [ Reference Ford and ZaharescuFZ15 , section 7] proved that $N_{\pi}(\sigma, T) \ll T^{1-\frac{1}{72}(\sigma-\frac{1}{2})}\log T$ . We prove:

Theorem 1·1. Let $\theta\in[0,{7}/{64}]$ be an admissible exponent toward the generalised Ramanujan conjecture for Hecke–Maaß newforms (see (2·1)), and fix $0<c<{1}/{4}-{\theta}/{2}$ . If $\pi \in \mathscr{A}$ , $\sigma \geq {1}/{2}$ , and $T \geq 2$ , then $N_{\pi}(\sigma, T) \ll T^{1-c(\sigma-\frac{1}{2})}\log T$ . The implied constant depends at most on $\pi$ .

Remark 1. Under the generalised Ramanujan conjecture for all Hecke–Maaß newforms, we may take $\theta=0$ . In this case, our result is as strong as Selberg’s zero density estimate (1·2) for $\zeta(s)$ . Currently, the best unconditional bound is $\theta\leq {7}/{64}$ , so we may choose any $c<{25}/{128}$ . This noticeably improves the work of Luo and Li, and it holds for any $\pi\in\mathscr{A}$ . The constant ${1}/{4}-{\theta}/{2}$ is, as of now, the supremum over all $\varpi$ for which we can unconditionally prove an asymptotic for the second mollified moment of $L(s,\pi)$ on $\textrm{Re}(s)={1}/{2}+{1}/{\log T}$ with a mollifier of length $T^{\varpi}$ .

Corollary 1·2. Let $\pi \in \mathscr{A}$ . If $V\in\mathbb{R}$ , then as $T\to\infty$ , we have:

\begin{equation*} \lim_{T\to\infty}\frac{1}{T}{\text{meas}}\Big\{T\leq t\leq 2T\colon \log|L(\tfrac{1}{2}+it,\pi)| \geq V\sqrt{\tfrac{1}{2}\log\log T}\Big\}=\frac{1}{\sqrt{2\pi}}\int_V^{\infty}e^{-u^2/2}du; \end{equation*}
\begin{equation*} \lim_{T\to\infty}\frac{1}{T}{\text{meas}}\Big\{T\leq t\leq 2T\colon \arg L(\tfrac{1}{2}+it,\pi) \geq V\sqrt{\tfrac{1}{2}\log\log T}\Big\}=\frac{1}{\sqrt{2\pi}}\int_V^{\infty}e^{-u^2/2}du. \end{equation*}

Proof. Bombieri and Hejhal [ Reference Bombieri and HejhalBH95 , theorem B] proved that this follows from a zero density estimate of the quality given by Theorem 1·1.

Remark 2. Radziwiłł and Soundararajan [ Reference Radziwiłł and SoundararajanRS17 ] recently found a second proof of (1·3) which avoids the use of zero density estimates. Their work was recently extended to holomorphic newforms by Das [ Reference DasDas20 ]. The proof relies on both the generalised Ramanujan conjecture and the Sato–Tate conjecture, neither of which is known for any Hecke–Maaß newform.

We study the distribution of imaginary parts of the nontrivial zeros of $L(s, \pi)$ using Theorem 1·1. First, we give an incomplete history of such results for $\zeta(s)$ . Hlawka [ Reference HlawkaHla75 ] proved that if $\alpha\in\mathbb{R}$ is fixed and $h\colon \mathbb{T}\to\mathbb{C}$ is continuous, then

(1·5) \begin{equation} \lim_{T\to\infty}\frac{1}{N(T)}\sum_{|\gamma|\leq T}h(\alpha\gamma)=\int_{\mathbb{T}}h(t)dt,\end{equation}

where $\gamma$ varies over the imaginary parts of the nontrivial zeros of $\zeta(s)$ and $\mathbb{T}=\mathbb{R}/\mathbb{Z}$ . Thus the sequence of fractional parts $\{\gamma\alpha\}$ is equidistributed modulo 1. However, given a rate of convergence, there exist continuous functions h such that the limit in (1·5) cannot be attained with said rate (see also [ Reference Ford and ZaharescuFZ05 , theorem 7]). Therefore, (1·5) is the best that one can say for arbitrary h.

Ford and Zaharescu [ Reference Ford and ZaharescuFZ05 , corollary 2] established the existence of a second order term, proving that if $h\;:\;\mathbb{T}\to\mathbb{C}$ is twice continuously differentiable,Footnote 1 then

(1·6) \begin{equation} \sum_{|\gamma|\leq T}h(\alpha\gamma)=N(T)\int_{\mathbb{T}}h(t)dt+T\int_{\mathbb{T}}h(t)g_{\alpha}(t)dt+o(T),\end{equation}

where

(1·7)

Despite the limitations on the analytic properties of h, Ford and Zaharescu still conjectured [ Reference Ford and ZaharescuFZ05 , conjecture A] that for any interval $\mathbb{I}\subseteq\mathbb{T}$ of length $|\mathbb{I}|$ , we have

(1·8) \begin{equation}\sum_{\substack{|\gamma|\leq T \\ \{\alpha\gamma\}\in\mathbb{I}}}1 = |\mathbb{I}|N(T)+T\int_{\mathbb{I}}g_{\alpha}(t)dt+o(T),\end{equation}

which implies that

(1·9) \begin{equation}D_{\alpha}(T)\;:\!=\;\sup_{\mathbb{I}\subseteq \mathbb{T}}\Big|\frac{1}{N(T)}\sum_{\substack{|\gamma|\leq T \\ \{\alpha\gamma\}\in\mathbb{I}}}1 -|\mathbb{I}|\Big|=\frac{T}{N(T)}\sup_{\mathbb{I}\subseteq\mathbb{T}}\Big|\int_{\mathbb{I}}g_{\alpha}(t)dt\Big|+o\Big(\frac{1}{\log T}\Big).\end{equation}

Ford, Soundararajan and Zaharescu [ Reference Ford, Soundararajan and ZaharescuFSZ09 ] made some progress toward the conjectured asymptotics (1·8) and (1·9). Unconditionally, they proved that

(1·10) \begin{equation}D_{\alpha}(T)\geq \frac{T}{N(T)}\sup_{\mathbb{I}\subseteq\mathbb{T}}\Big|\int_{\mathbb{I}}g_{\alpha}(t)dt\Big|+o\Big(\frac{1}{\log T}\Big).\end{equation}

Assuming RH, they proved that

(1·11) \begin{equation}\Big|\sum_{\substack{|\gamma|\leq T \\ \{\alpha\gamma\}\in\mathbb{I}}}1 - |\mathbb{I}|N(T)-T\int_{\mathbb{I}}g_{\alpha}(t)dt\Big|\leq \Big(\frac{\alpha}{2}+o(1)\Big)T.\end{equation}

Along with making some appealing connections between the conjectured asymptotics (1·8) and (1·9) and other intriguing open problems like pair correlation of zeros of $\zeta(s)$ and the distribution of primes in short intervals, they proved analogues for other L-functions of (1·10) (assuming a zero density estimate of the form (1·2)) and (1·11) (assuming GRH).

In this paper, we extend the work in [ Reference Ford and ZaharescuFZ05, Reference Ford, Soundararajan and ZaharescuFSZ09, Reference Ford, Meng and ZaharescuFMZ17, Reference Liu and ZaharescuLZ21 ] to $L(s,\pi)$ for any $\pi\in\mathscr{A}$ using Theorem 1·1. Let $n \ge 1$ . Consider the $\boldsymbol{\alpha}\in\mathbb{R}^n$ for which there exists a constant $C_{\boldsymbol{\alpha}}>0$ such thatFootnote 2

(1·12) \begin{equation} |\boldsymbol{m} \cdot \boldsymbol{\alpha}| \geq C_{\boldsymbol{\alpha}}e^{-\|\boldsymbol{m}\|_2 }\qquad {\text{for all}} \, {\boldsymbol{m}\in\mathbb{Z}^n \setminus \{\textbf{0}\}$},\end{equation}

where $\|\boldsymbol{m}\|_p$ is the $\ell^p$ norm on $\mathbb{R}^n$ for $1\leq p\leq\infty$ . This is a technical artifact of our extension to $\mathbb{R}^n$ ; when $n=1$ , the condition reduces to $\alpha\neq 0$ . Our density function $g_{\pi, \boldsymbol{\alpha}}(\boldsymbol{t})$ , which extends (1·7) for $n\geq 2$ , is identically zero unless there exists a matrix $M=(b_{jk}) \in \mathcal{M}_{r\times n}(\mathbb{Z})$ with linearly independent row vectors $\boldsymbol{b}_j$ and $\gcd(b_{j1}, \ldots, b_{jn}) = 1$ for all $1 \leq j \leq r$ ; fully reduced rationals $a_1/q_1, \ldots, a_r/q_r$ ; and distinct primes $p_1, \ldots, p_r$ such that

(1·13) \begin{equation} M\boldsymbol{\alpha}^{\intercal}=\left(\frac{a_1}{q_1}\frac{\log p_1}{2\pi},\ldots,\frac{a_r}{q_r}\frac{\log p_r}{2\pi}\right)^{\intercal}.\end{equation}

Among such possible matrices M, choose one with maximal r, which uniquely determines the row vectors $\boldsymbol{b}_j=(b_{j1},\ldots,b_{jn})$ . If such an M exists, then define

(1·14) \begin{equation} g_{\pi, \boldsymbol{\alpha}}(\boldsymbol{t}) \;:\!=\; -\frac{2}{\pi} \Re\sum_{j = 1}^{r} \sum_{l = 1}^{\infty} \frac{\Lambda_{\pi}({p_j}^{a_jl})}{{p_j}^{a_jl/2}} e^{-2 \pi i q_j l ({\boldsymbol{b}_\boldsymbol{j}} \cdot \boldsymbol{t})},\end{equation}

where

\begin{equation*} -\frac{L^\prime(s,\pi)}{L(s,\pi)} = \sum_{n =1}^{\infty} \frac{\Lambda_{\pi}(n)}{n^s},\qquad \textrm{Re}(s)>1.\end{equation*}

Let $\pi\in\mathscr{A}$ , $n\geq 1$ , and $\mathbb{B} \subseteq \mathbb{T}^n$ be a product of n subintervals of $\mathbb{T}$ . The conjecture in (1·8) can be extended to $\pi\in\mathscr{A}$ as follows:

(1·15) \begin{equation}\sum_{\substack{|\gamma|\leq T \\ \{\gamma \boldsymbol{\alpha}\} \in \mathbb{B}}} 1 = \textrm{vol}(\mathbb{B}) N_{\pi}(T) + T \int_{\mathbb{B}}g_{\pi, \boldsymbol{\alpha}}(\boldsymbol{t}) {d}\boldsymbol{t} + o(T),\end{equation}

where $\gamma$ ranges over the imaginary parts of the nontrivial zeros of $L(s,\pi)$ . As progress toward (1·15), we prove an unconditional n-dimensional version of (1·6) for $\textrm{GL}_2$ L-functions. In what follows, let $C^u(\mathbb{T}^n)$ be the set of u-times continuously differentiable functions $h\colon\mathbb{T}^n\to\mathbb{R}$ . Let $\gamma$ vary over the imaginary parts of the nontrivial zeros of $L(s, \pi)$ .

Theorem 1·3. Let $\pi \in \mathscr{A}$ . Let $\boldsymbol{\alpha} \in \mathbb{R}^n$ satisfy (1·12). If $h \in C^{n+2}(\mathbb{T}^n)$ , then

(1·16) \begin{equation} \sum_{|\gamma| \leq T} h(\gamma \boldsymbol{\alpha}) = N_{\pi}(T)\int_{\mathbb{T}^n} h(\boldsymbol{t}){d}\boldsymbol{t} + T \int_{\mathbb{T}^n} h(\boldsymbol{t}) g_{\pi, \boldsymbol{\alpha}}(\boldsymbol{t}){d}\boldsymbol{t}+o(T), \end{equation}

where ${d}\boldsymbol{t}$ is Lebesgue measure on $\mathbb{T}^n$ . The implied constant depends on $\pi$ , h, and $\boldsymbol{\alpha}$ .

Remark 3. With extra work, we may allow $h\in C^{n+1}(\mathbb{T}^n)$ . Also, under some extra conditions on $\boldsymbol{\alpha}$ which excludes a density zero subset of $\mathbb{R}^n$ , we expect to further quantify the o(T) error term in (1·16).

Define the discrepancy

\begin{equation*} D_{\pi, \boldsymbol{\alpha}}(T) \;:\!=\; \sup_{\mathbb{B}\subseteq\mathbb{T}^n} \Big|\frac{1}{N_{\pi}(T)} \sum_{\substack{|\gamma|\leq T \\ \{\gamma \boldsymbol{\alpha}\} \in \mathbb{B}}}1-\textrm{vol}(\mathbb{B})\Big|.\end{equation*}

Our next result follows quickly from Theorem 1·3.

Corollary 1·4. Let $\pi\in\mathscr{A}$ . If $\boldsymbol{\alpha}\in\mathbb{R}^n$ satisfies (1·12), then

\begin{equation*} D_{\pi, \boldsymbol{\alpha}}(T) \geq \frac{T}{N_{\pi}(T)}\int_{\mathbb{T}^n}g_{\pi, \alpha}(\boldsymbol{t}){d}\boldsymbol{t}+o\Big(\frac{1}{\log T}\Big). \end{equation*}

When $n=1$ , we recover an unconditional analogue of (1·10) for all $\pi\in\mathscr{A}$ .This special case of Corollary 1·4 was proved in [ Reference Ford, Soundararajan and ZaharescuFSZ09 ] under the hypothesis of a zero density estimate of the form proved in Theorem 1·1.

Remark 4. Let $d\geq 3$ be an integer, and let $L(s,\pi)$ be the standard L-function associated to a cuspidal automorphic representation $\pi$ of $\textrm{GL}_d$ over $\mathbb{Q}$ . Let $N_{\pi}(\sigma,T)$ be the number of nontrivial zeros $\beta+i\gamma$ of $L(s,\pi)$ with $\beta\geq\sigma$ and $|\gamma|\leq T$ . If there exist constants $c_{\pi}>0$ and $d_{\pi}>0$ such that $N_{\pi}(\sigma,T)\ll T^{1-c_{\pi}(\sigma-\frac{1}{2})}(\!\log T)^{d_{\pi}}$ , then one can prove an analogue of Theorem 1·3 and Corollary 1·4 for $L(s,\pi)$ . Such an estimate for $N_{\pi}(\sigma,T)$ is not yet known for any $d\geq 3$ , and it appears to be quite difficult to prove.

1·2. Application to “zero races”

In a letter to Fuss, Chebyshev observed that the generalised Riemann hypothesis implies that primes $p\equiv 3\pmod{4}$ tend to be more numerous than primes $p\equiv 1\pmod{4}$ . Using the generalised Riemann hypothesis and other hypotheses, Rubinstein and Sarnak [ Reference Rubinstein and SarnakRS94 ] began a systematic study of “prime number races” in which they determine how often $\pi(x;4,3)>\pi(x;4,1)$ , where $\pi(x;q,a)$ equals $\#\{p\leq x\colon p\equiv a\pmod{q}\}$ . They proved that

\begin{equation*} \lim_{X\to\infty}\frac{1}{\log X}\int_{\substack{2\leq t\leq X \\ \pi(t;4,3)>\pi(t;4,1)}}\frac{dt}{t} = 0.9959\ldots\end{equation*}

Thus the “bias” toward primes of the form $4n+3$ is quite strong. The literature on prime number races which study such inequities is quite vast. See, for instance, the work of Fiorilli, Ford, Harper, Konyagin, Lamzouri and Martin [ Reference Fiorilli and MartinFM13, Reference Ford and KonyaginFK02, Reference Ford, Lamzouri and KonyaginFLK13, Reference Ford, Harper and LamzouriFHL19 ].

We use Theorem 1·3 to study inequities not between primes in different residue classes, but between zeros of different L-functions. Define

Let $h\in\mathscr{C}^{n+2}(\mathbb{T}^n)$ , and let $\boldsymbol{\alpha}$ satisfy (1·12). We consider two holomorphic cusp forms $f_1$ and $f_2$ with trivial nebentypus, where

\begin{equation*} f_j(z) = \sum_{n=1}^{\infty}\lambda_{f_j}(n)n^{\frac{k_j-1}{2}}e^{2\pi i n z}\in S_{k_j}^{\textrm{new}}(\Gamma_0(q_j)),\qquad j\in\{1,2\}\end{equation*}

have trivial nebentypus, even integral weights $k_j\geq 2$ and squarefree levels $q_j\geq 1$ . We assume that $f_j$ is normalised so that $\lambda_{f_j}(1)=1$ and that $f_j$ is an eigenfunction of all of the Hecke operators. We call such cusp forms newforms (see [ Reference OnoOno04 , section 2·5]). It is classical that there exists $\pi_j\in\mathscr{A}$ such that $L(s,f_j)=L(s,\pi_j)$ , so $\lambda_{f_j}(n) = \lambda_{\pi_j}(n)$ , $g_{f_j,\boldsymbol{\alpha}}(\boldsymbol{t})=g_{\pi_j,\boldsymbol{\alpha}}(\boldsymbol{t})$ , etc.

We say $f_1$ wins the $(\boldsymbol{\alpha}, h)$ -race (against $f_2$ ) if for all large T, we have

\begin{equation*} \sum_{|\gamma_1| \le T} h(\boldsymbol{\alpha} \gamma_1)> \sum_{|\gamma_2| \le T} h(\boldsymbol{\alpha} \gamma_2),\end{equation*}

where $\gamma_j$ runs over the imaginary parts of the nontrivial zeros of $L(s, f_j)$ . If neither $f_1$ nor $f_2$ wins the $(\boldsymbol{\alpha}, h)$ -race, we say the race is undecided. The results of [ Reference Liu and ZaharescuLZ21 ] suggest that the winner of a decided $(\boldsymbol{\alpha},h)$ -race is determined by the levels $q_1$ and $q_2$ and the behavior of $g_{f_1, \boldsymbol{\alpha}}$ and $g_{f_2, \boldsymbol{\alpha}}$ .

First, we show that if $q_1 = q_2$ and $h \in \mathscr{C}^{3}(\mathbb{T})$ , then the proportion of primes p such that $f_1$ wins the $({\log p}/{2\pi}, h)$ -race is ${1}/{2}$ .

Corollary 1·5. For $j=1,2$ , let $q_j$ be squarefree and $f_j \in S_{k_j}^{\textrm{new}} (\Gamma_0(q_j))$ be non-CM newforms. Suppose that $f_1\neq f_2\otimes\chi$ for all primitive Dirichlet characters $\chi$ . If $h \in \mathscr{C}^{3}(\mathbb{T})$ , then

\begin{equation*} \frac{\#\{ p \le X \colon \text{$f_1$ wins the $(\frac{\log p}{2\pi}, h)$-race}\}}{\#\{p\leq X\}} = \frac{1}{2}+O\Big(\frac{\sqrt{\log\log\log X}}{(\!\log\log X)^{1/4}}\Big). \end{equation*}

Next we look at the distribution of

\begin{equation*}H(f_1, f_2, h, \alpha) \;:\!=\; \lim_{T \to \infty} \frac{\sum_{|\gamma_1| < T} h( \alpha \gamma_1 ) - \sum_{|\gamma_2| < T} h(\alpha \gamma_2 ) }{T} - \frac{1}{\pi}\log\frac{q_{1}}{q_{2}}\int_{\mathbb{T}}h(t)dt\end{equation*}

as $\alpha$ varies over values of ${\log p}/{2\pi}$ for prime values of p. Given $I \subseteq [\!-\!2, 2]$ , let $\mu_{\textrm{ST}}(I)$ be the Sato–Tate measure $1/(2\pi)\int_{I}\sqrt{4-t^2}dt$ , and let $\mu_{ST,2}$ be the product measure defined on boxes $I_1\times I_2\subseteq [\!-\!2,2]\times[\!-\!2,2]$ by $\mu_{\textrm{ST},2}(I_1\times I_2)=\mu_{\textrm{ST}}(I_1)\mu_{\textrm{ST}}(I_2)$ . For $\mathcal{I} \subseteq [\!-\!4,4]$ , we define

(1·17) \begin{equation} \nu(\mathcal{I}) \;:\!=\; \mu_{ST,2} ( \{ (x,y) \in [\!-\!2,2]^2\;:\; x - y \in \mathcal{I} \} ).\end{equation}

For $h \in \mathscr{C}^3(\mathbb{T})$ , we set

\begin{equation*} k_h \;:\!=\; \int_0^1 h(t) \cos(2 \pi t) dt. \end{equation*}

In the following statement and throughout the paper, for any interval I and $\beta \in \mathbb{R}$ , we let $\beta I = \{ \beta x\;:\; x \in I \}$ .

Corollary 1·6. For $j=1,2$ , let $q_j$ be squarefree and $f_j \in S_{k_j}^{\textrm{new}} (\Gamma_0(q_j))$ be normalised holomorphic non-CM newforms with trivial nebentypus. Suppose that $f_1\neq f_2\otimes\chi$ for all primitive Dirichlet characters $\chi$ . Let

\begin{equation*}\varepsilon_X \;:\!=\; \frac{(\!\log\log\log X)^{1/4}}{(\!\log\log X)^{1/8}}. \end{equation*}

Assume $h \in \mathscr{C}^3(\mathbb{T})$ is such that $k_h \neq 0$ . Then for any interval $\mathcal{I}\subseteq[\!-\!4,4]$ , we have

\begin{equation*}\frac{\# \{ p \in [(1-\varepsilon_X)X, X]\colon \frac{\log{X}}{\sqrt{X}} H(f_1, f_2, h, \frac{\log{p}}{2 \pi}) \in \mathcal{I} \}}{\#\{p\in[(1-\varepsilon_X)X,X]\}}= \nu\Big(\frac{\pi}{2 k_h} \mathcal{I}\Big)+ O( \varepsilon_X )\end{equation*}

with an implied constant independent of $\mathcal{I}$ .

If $q_1 > q_2$ , then in contrast to Corollary 1·5, $f_1$ wins the $({\log p}/{2\pi},h)$ -race for all except finitely many primes p.

Corollary 1·7. For $j=1,2$ , let $f_j \in S_{k_j}^{\textrm{new}} (\Gamma_0(q_j))$ be normalised holomorphic newforms with trivial nebentypus. If $q_1>q_2$ , then for any $h \in \mathscr{C}^3(\mathbb{T})$ , there are at most finitely many primes p such that $\pi_2$ wins the $({\log p}/{2\pi},h)$ -race.

Corollary 1·7 shows that it is rare for $\pi_1$ to win an $(\alpha,h)$ race against $\pi_2$ if $q_2>q_1$ , but we can show this occurs infinitely often. Our result can be stated neatly in terms of local races rather than in terms of the $(\alpha, h)$ -races described above. For $t_0 \in \mathbb{T}$ , we say that $f_1$ wins the local $(\alpha, t_0)$ -race against $f_2$ if there exists a neighbourhood U of $t_0 \in \mathbb{T}$ such that the $(\alpha, h)$ -race is won by $f_1$ for all $h \in \mathscr{C}^{3}(\mathbb{T})$ which are supported on U.

Corollary 1·8. For $j=1,2$ , let $q_j$ be squarefree and $f_j \in S_{k_j}^{\textrm{new}} (\Gamma_0(q_j))$ be normalised holomorphic non-CM newforms with trivial nebentypus. Suppose that $f_1\neq f_2\otimes\chi$ for all primitive Dirichlet characters $\chi$ . Fix $t_0 \in [0,1)$ . Let $q_1$ be sufficiently large, and let $q_2 \in (q_1, q_1 + q_1^{1/2}]$ , and let $k_1$ and $k_2$ be fixed. There exists $\alpha \in \mathbb{R}$ such that $f_1$ wins the local $(\alpha, t_0)$ -race against $f_2$ .

In addition to Theorem 1·3, the proofs of these corollaries rely on a quantifiable understanding of the joint distribution of $\lambda_{f_1}(p)$ and $\lambda_{f_2}(p)$ as p varies over the primes. Such an understanding follows from the effective version of the Sato–Tate conjecture which counts the number of primes $p\leq X$ such that $(\lambda_{f_1}(p),\lambda_{f_2}(p))\in I_1\times I_2$ proved by the third author in [ Reference ThornerTho21 ] (see Theorem 2·1 below). One can prove analogues of Corollaries 1·5, 1·6 and 1·8 for Dirichlet L-functions by replacing the effective Sato–Tate estimates with results on primes in arithmetic progressions.

2. Preliminaries

2·1. $\operatorname{GL}_2$ L-functions over $\mathbb{Q}$

Let $\pi\in\mathscr{A}$ . Here, we state the essential properties of L-functions of $L(s,\pi)$ that we use throughout our proofs. See [ Reference Iwaniec and KowalskiIK04 , chapter 5] for a convenient summary. Given $\pi\in\mathscr{A}$ with level $q_{\pi}$ , there exist suitable complex numbers $\alpha_{1,\pi}(p)$ and $\alpha_{2,\pi}(p)$ such that

\begin{equation*}L(s,\pi) = \prod_{{\textit{p} prime}}\prod_{j=1}^{2} ( 1- \alpha_{j,\pi}(p) p^{-s} )^{-1} = \sum_{n=1}^{\infty}\frac{\lambda_{\pi}(n)}{n^s}.\end{equation*}

The sum and product both converge absolutely for $\textrm{Re}(s)>1$ . There also exist spectral parameters $\kappa_{\pi}(1)$ and $\kappa_{\pi}(2)$ such that if we define

\begin{equation*}L(s,\pi_{\infty})=\pi^{-s}\Gamma\Big(\frac{s+\kappa_{\pi}(1)}{2}\Big)\Gamma\Big(\frac{s+\kappa_{\pi}(2)}{2}\Big),\end{equation*}

then the completed L-function $\Lambda(s,\pi)\;:\!=\;q_{\pi}^{s/2}L(s,\pi)L(s,\pi_{\infty})$ is entire of order 1.

Let $\tilde{\pi}\in\mathscr{A}$ be the contragredient representation. We have $\alpha_{j,\tilde{\pi}}(p)=\overline{\alpha_{j,\pi}(p)}$ and $\kappa_{\tilde{\pi}}(j)=\overline{\kappa_{\pi}(j)}$ for $j=1,2$ . Moreover, there exists a complex number $W(\pi)$ of modulus 1 such that for all $s\in\mathbb{C}$ , we have

\begin{equation*}\Lambda(s,\pi)=W(\pi)\Lambda(1-s,\tilde{\pi}).\end{equation*}

Building on work of Kim and Sarnak [ Reference KimKim03 , appendix], Blomer and Brumley [ Reference Blomer and BrumleyBB11 ] proved that there exists $\theta\in[0,7/64]$ such that we have the uniform bounds

(2·1) \begin{equation} \log_p | \alpha_{j,\pi} (p)|,\;-\textrm{Re}(\kappa_{\pi}(j))\leq \theta.\end{equation}

The generalised Ramanujan conjecture and the Selberg eigenvalue conjecture assert that (2·1) holds with $\theta=0$ .

The Rankin–Selberg L-functionFootnote 3

\begin{equation*}L(s,\pi\otimes\tilde{\pi})=\sum_{n=1}^{\infty}\frac{\lambda_{\pi\times\tilde{\pi}}(n)}{n^s}\doteq \prod_{p\nmid q_{\pi}}\prod_{j=1}^{2}\prod_{j^{\prime}=1}^{2}(1-\alpha_{j,\pi}(p)\overline{\alpha_{j^{\prime},\pi}(p)}p^{-s})^{-1},\qquad \textrm{Re}(s)>1\end{equation*}

factors as $\zeta(s)L(s,\textrm{Ad}^2\pi)$ , where the adjoint square lift $\textrm{Ad}^2\pi$ is an automorphic representation of $\textrm{GL}_3(\mathbb{A}_{\mathbb{Q}})$ . Thus, $L(s,\textrm{Ad}^2\pi)$ is an entire automorphic L-function. This fact and the bound $|\lambda_{\pi}(n)|^2\leq \lambda_{\pi\times\tilde{\pi}}(n)$ [ Reference Jiang, Lü and WangJLW21 , lemma 3·1], enable us to prove via contour integration that

(2·2) \begin{equation}\sum_{n\leq X}|\lambda_{\pi}(n)|^2\leq \sum_{n\leq X}\lambda_{\pi\times\tilde{\pi}}(n)\ll_{\pi}X.\end{equation}

It follows from [ Reference Iwaniec and KowalskiIK04 , theorem 5·42] applied to $\zeta(s)$ and $L(s,\textrm{Ad}^2\pi)$ that there exists an effectively computable constant $c_{\pi}>0$ such that $L(s,\pi\times\tilde{\pi})\neq 0$ in the region

(2·3) \begin{equation} \textrm{Re}(s)\geq 1- \frac{c_{\pi}}{\log(|\textrm{Im}(s)|+3)}.\end{equation}

2·2. Holomorphic newforms

Many of our corollaries pertain specifically to $\pi\in\mathscr{A}$ corresponding to holomorphic newforms. As above, let

\begin{equation*} f(z) = \sum_{n=1}^{\infty}\lambda_f(n)n^{\frac{k-1}{2}}e^{2\pi inz}\in S_k^{\textrm{new}}(\Gamma_0(q))\end{equation*}

be a holomorphic cuspidal newform (normalised so that $\lambda_f(1)=1$ ) of even integral weight $k\geq 2$ , level $q\geq 1$ , and trivial nebentypus. If $\pi_f\in\mathscr{A}$ corresponds with f, then $L(s,f)=L(s,\pi_f)$ , $\lambda_f(n)=\lambda_{\pi_f}(n)$ , etc.

For these newforms, it follows from Deligne’s proof of the Weil conjectures that the generalised Ramanujan conjecture holds. Thus, for f a holomorphic cuspidal newform as above, we may take $\theta=0$ in (2·1). Since we assume that f has trivial central character, Deligne’s bound implies that there exists $\theta_p\in[0,\pi]$ such that

\begin{equation*} \lambda_f(p)=2\cos\theta_p.\end{equation*}

The Sato–Tate conjecture, now a theorem due to Barnet-Lamb, Geraghty, Harris, and Taylor [ Reference Barnet-Lamb, Geraghty, Harris and TaylorBLGHT11 ], states that the sequence $(\theta_p)$ is equidistributed in the interval $[\!-\!2,2]$ with respect to the measure ${2}/{\pi}(\sin t)^2 dt$ . In other words, if $I\subseteq[0,\pi]$ is a subinterval, then

\begin{equation*} \lim_{X\to\infty}\frac{\#\{p\leq X\colon \theta_p\in I\}}{\#\{p\leq X\}}=\frac{2}{\pi}\int_{I}(\sin t)^2 dt,\qquad \pi(X)\;:\!=\;\#\{{\textit{p} prime\;:\; }p\leq X\}.\end{equation*}

After a change of variables, this implies that for any interval $I \subseteq [\!-\!2,2]$ , we have

(2·4) \begin{equation} \lim_{X \to \infty} \frac{ \# \{ \lambda_f(p) \in I\;:\; p \le X \}}{\#\{p\leq X\}} = \frac{1}{2\pi} \int_I \sqrt{4-t^2} dt \;=\!:\; \mu_{\textrm{ST}}(I).\end{equation}

A recent paper by Thorner [ Reference ThornerTho21 ] provides both an unconditional and a GRH-conditional rate of convergence in (2·4).

Our corollaries of Theorem 1·3 require a natural refinement of the Sato–Tate conjecture. For $j=1,2$ , let $f_j\in S_{k_j}^{\textrm{new}}(\Gamma_0(q_j))$ be a holomorphic cuspidal newform as above. Suppose that $f_1\neq f_2\otimes\chi$ for all primitive nontrivial Dirichlet characters $\chi$ . Building on work of Harris [ Reference HarrisHar09 ], Wong [ Reference WongWon19 ] proved that the sequences $(\lambda_{f_1}(p))$ and $(\lambda_{f_2}(p))$ exhibit a joint distribution: If $I_1,I_2\subseteq [\!-\!2,2]$ , then

(2·5) \begin{equation}\lim_{X\to\infty}\frac{\#\{p\leq X\colon \lambda_{f_1}(p)\in I_1,\;\lambda_{f_2}(p)\in I_2\}}{\#\{p\leq X\}}=\mu_{\textrm{ST}}(I_1)\mu_{\textrm{ST}}(I_2).\end{equation}

Our corollaries of Theorem 1·3 require a nontrivial unconditional bound on the rate of convergence in (2·5). Such a bound was recently proved in [ Reference ThornerTho21 , theorem 1·2].

Theorem 2·1. For $j=1,2$ , let $q_j$ be squarefree and $f_j \in S_{k_j}^{\textrm{new}}(\Gamma_0(q_j))$ be a normalised holomorphic cuspidal newform with trivial nebentypus. Suppose that $f_1\neq f_2\otimes\chi$ for all primitive nontrivial Dirichlet character $\chi$ . Let $I_1, I_2\subseteq [\!-\!2, 2]$ be subintervals. There exists an absolute and effectively computable constant $c>0$ such that

\begin{equation*} \Big|\frac{\# \{ p \le X\colon \lambda_{f_1, p} \in I_1, \lambda_{f_2}(p) \in I_2 \}}{\#\{p\leq X\}} - \mu_{\textrm{ST}}(I_1) \mu_{\textrm{ST}}(I_2)\Big|\leq c\frac{\log \log(k_1 k_2 q_1 q_2 \log X)}{\sqrt{\log \log X}}. \end{equation*}

We use the following result to prove our corollaries of Theorem 1·3.

Corollary 2·2. Let $f_1$ and $f_2$ be as in Theorem 2·1. Recall the definition of $\nu$ in (1·17). If $\mathcal{I} \subseteq[\!-\!4,4]$ , then

\begin{equation*} \frac{\# \{p \le X\;:\; \lambda_{f_1}(p) - \lambda_{f_2}(p) \in \mathcal{I} \}}{\#\{p\leq X\}}=\nu(\mathcal{I})+O\Big(\frac{\sqrt{\log\log\log X}}{(\!\log\log X)^{1/4}}\Big), \end{equation*}

with an implied constant independent of $\mathcal{I}$ .

Proof. Let

\begin{equation*} g(X) \;:\!=\; \frac{(\!\log\log X)^{1/4}}{\sqrt{\log\log\log X}},\qquad S \;:\!=\; \{(x,y) \in [\!-\!2,2]^2\;:\; x-y \in \mathcal{I} \}. \end{equation*}

We will define rectangles whose unions approximate S. Let $x_j = -2 + j \lfloor {4}/{g(X)} \rfloor$ . If $\mathcal{I} = ( c, d)$ , set $R_j = [x_j, x_{j+1}] \times [x_j - d, x_{j+1} - c]$ , and similarly $T_j \;:\!=\; [x_j, x_{j+1}] \times [x_{j+1} - d, x_j - c]$ . By construction, we have $\cup_j T_j \subseteq S \subseteq \cup_j R_j$ , which implies that

(2·6) \begin{align} \# \{ p \le X\;:\; (\lambda_{f_1} (p), \lambda_{f_2}(p)) \in \cup T_j \} &\le \# \{ p \le X\;:\; (\lambda_{f_1} (p), \lambda_{f_2}(p)) \in S \} \notag\\ & \le \# \{ p \le X\;:\; (\lambda_{f_1} (p), \lambda_{f_2}(p)) \in \cup_j R_j \}.\end{align}

We apply Theorem 2·1 to count the primes p with $(\lambda_{f_1} (p), \lambda_{f_2}(p))$ in $\cup_j R_j$ .

\begin{align*} \frac{\# \{ p \le X\;:\; (\lambda_{f_1} (p), \lambda_{f_2}(p)) \in \cup_j R_j \}}{\#\{p\leq X\}} & = \sum_{j = 1}^{g(X)} \Big( \mu_{ST, 2}(R_j) + O \Big( \frac{\log \log \log X}{\sqrt{\log \log X}} \Big) \Big) \\ & = \mu_{ST, 2} (\cup_j R_j) + O\Big(g(X) \frac{\log \log \log X}{\sqrt{\log \log X}}\Big). \end{align*}

Since the area of $\cup_j R_j \setminus S$ is at most $g(X) \lfloor {4}/{g(X)} \rfloor^2$ , we have

\begin{equation*} \mu_{ST, 2}(\cup_j R_j) - \mu_{ST, 2}(S) = \mu_{ST, 2}( (\cup_j R_j ) \setminus S) = O(g(X)^{-1}), \end{equation*}

and we conclude that

(2·7) \begin{equation} \begin{aligned} &\frac{\# \{ p \le X\;:\; (\lambda_{f_1} (p), \lambda_{f_2}(p)) \in \cup_j R_j \}}{\#\{p\leq X\}} \\ &= \nu(\mathcal{I}) + O \Big( g(X)^{-1} + g(X) \frac{\log \log \log X}{\sqrt{\log \log X}} \Big)= \nu(\mathcal{I}) + O\Big(\frac{\sqrt{\log\log\log X}}{(\!\log\log X)^{1/4}}\Big). \end{aligned} \end{equation}

The same argument shows that (2·7) holds with $R_j$ replaced with $T_j$ on the left-hand side. The lemma now follows from (2·6).

Finally, we require a refinement of (1·4), namely

(2·8) \begin{equation} N_f(T) = T\log\Big(q_f \Big(\frac{T}{2\pi e}\Big)^2\Big)+O(\!\log(k_f q_f T)).\end{equation}

This is [ Reference Iwaniec and KowalskiIK04 , theorem 5·8] applied to L(s,f).

3. Proof of Theorem 1·1

Let $\pi\in\mathscr{A}$ . We detect the zeros of $L(s,\pi)$ by estimating a mollified second moment of $L(s,\pi)$ near the line $\textrm{Re}(s)={1}/{2}$ . To describe our mollifier, we define $\mu_{\pi}(n)$ by the convolution identity

(3·1) \begin{equation}\sum_{d|n}\mu_{\pi}(d)\lambda_{\pi}(n/d)=\begin{cases} 1&\mbox{if $n=1$,}\\ 0&\mbox{if $n>1$}\end{cases}\end{equation}

so that

\begin{equation*}\frac{1}{L(s,\pi)}=\sum_{n=1}^{\infty}\frac{\mu_{\pi}(n)}{n^s},\qquad \textrm{Re}(s)>1.\end{equation*}

Let $T>0$ be a large parameter, and let $0<\varpi<{1}/{4}$ . Define P(t) by

(3·2) \begin{equation} P(t) = \begin{cases} 1&\mbox{if $0\leq t\leq T^{\varpi/2}$,}\\ 2(1-\frac{\log t}{\log T^{\varpi}})&\mbox{if $T^{\varpi/2}<t\leq T^{\varpi}$,}\\ 0&\mbox{if $t>T^{\varpi}$.} \end{cases}\end{equation}

Our mollifier is

(3·3) \begin{equation}M_{\pi}(s, T^{\varpi}) = \sum_{n\leq T^{\varpi}}\frac{\mu_{\pi}(n)}{n^{s}}P(n).\end{equation}

As a proxy for detecting zeros of $L(s,\pi)$ near $\textrm{Re}(s)={1}/{2}$ , where $L(s,\pi)$ oscillates wildly, we detect zeros of the mollified L-function $L(s,\pi)M_{\pi}(s, T^{\varpi})$ near $\textrm{Re}(s)={1}/{2}$ . To this end, we let $w\;:\;\mathbb{R}\to\mathbb{R}$ be an infinitely differentiable function whose support is a compact subset of $[T/4,2T]$ and whose j-th derivative satisfies $|w^{(j)}(t)|\ll_{w,j}((\!\log T)/T)^j$ for all $j\geq 0$ . Also, let $w(t)=1$ for $t\in[T/2,T]$ . We will estimate

\begin{equation*}I_f(\alpha,\beta)=\int_{-\infty}^{\infty}w(t)L(\tfrac{1}{2}+\alpha+it,\pi)L(\tfrac{1}{2}+\beta-it,\tilde{\pi} )|M_{\pi}(\tfrac{1}{2}+\tfrac{1}{\log T}+it,T^{\varpi})|^2 dt,\end{equation*}

eventually choosing $\alpha$ and $\beta$ to equal $1/\log T$ . Define

\begin{align*}G(s) &= e^{s^2}\frac{(\alpha+\beta)^2-(2s)^2}{(\alpha+\beta)^2}, \\g_{\alpha,\beta}(s,t)&=\frac{L(\frac{1}{2}+\alpha+s+it,\pi_{\infty})L(\frac{1}{2}+\beta+s-it,\tilde{\pi}_{\infty})}{L(\frac{1}{2}+\alpha+it,\pi_{\infty})L(\frac{1}{2}+\beta-it,\tilde{\pi}_{\infty})},\\V_{\alpha,\beta}(s,t)&=\frac{1}{2\pi i}\int_{\textrm{Re}(s)=1}\frac{G(s)}{s}g_{\alpha,\beta}(s,t)x^{-s}ds,\\X_{\alpha,\beta}(t)&=\frac{L(\frac{1}{2}-\alpha-it,\pi_{\infty})L(\frac{1}{2}-\beta+s+it,\tilde{\pi}_{\infty})}{L(\frac{1}{2}+\alpha+it,\pi_{\infty})L(\frac{1}{2}+\beta-it,\tilde{\pi}_{\infty})}.\end{align*}

As in [ Reference BernardBer15, Reference Andersen and ThornerAT21 ], it follows from the approximate functional equation (see [ Reference Iwaniec and KowalskiIK04 , section 5.2] also) that

\begin{equation*}I_f(\alpha,\beta)=\sum_{a,b\leq T^{\varpi}}\frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}}{\sqrt{ab}}\frac{P(a)P(b)}{(ab)^{\frac{1}{\log T}}}(D_{a,b}^{+}(\alpha,\beta)+D_{a,b}^{-}(\alpha,\beta)+N_{a,b}^{+}(\alpha,\beta)+N_{a,b}^{-}(\alpha,\beta)),\end{equation*}

where we have split the sum into diagonal terms

\begin{align*} D_{a,b}^{+}(\alpha,\beta) &= \sum_{am=bn} \frac{\lambda_{\pi}(m)\overline{\lambda_{\pi}(n)}}{m^{\frac{1}{2}+ \alpha}n^{\frac{1}{2}+\beta}} \int_{-\infty}^{\infty} w(t) V_{\alpha,\beta}(mn,t) \, dt, \\ D_{a,b}^{-}(\alpha,\beta) &= \sum_{am=bn} \frac{\lambda_{\pi}(m)\overline{\lambda_{\pi}(n)}}{m^{\frac{1}{2}- \beta}n^{\frac{1}{2}-\alpha}} \int_{-\infty}^{\infty} w(t) X_{\alpha,\beta}(t) V_{-\beta,-\alpha}(mn,t) \, dt\end{align*}

and off-diagonal terms

\begin{align*} N_{a,b}^{+}(\alpha,\beta) &= \sum_{am\neq bn} \frac{\lambda_{\pi}(m)\overline{\lambda_{\pi}(n)}}{m^{\frac{1}{2}+ \alpha}n^{\frac{1}{2}+\beta}} \int_{-\infty}^{\infty} w(t) \Big(\frac{bn}{am}\Big)^{it} V_{\alpha,\beta}(mn,t) \, dt, \\ N_{a,b}^{-}(\alpha,\beta) &= \sum_{am\neq bn} \frac{\lambda_{\pi}(m)\overline{\lambda_{\pi}(n)}}{m^{\frac{1}{2}- \beta}n^{\frac{1}{2}-\alpha}} \int_{-\infty}^{\infty} w(t) \Big(\frac{bn}{am}\Big)^{it} X_{\alpha,\beta}(t) V_{-\beta,-\alpha}(mn,t) \, dt.\end{align*}

Lemma 3·1. Let $\varepsilon>0$ . If $\alpha,\beta\in\mathbb{C}$ satisfy $|\alpha|,|\beta|\ll {1}/{\log T}$ and $|\alpha+\beta|\gg {1}/{\log T}$ , then for any integers $a,b\geq 1$ , we have that $N_{a,b}^{\pm}(\alpha,\beta)\ll_{\varepsilon}(ab)^{\frac{1}{2}}T^{\frac{1}{2}+\theta}(abT)^{\varepsilon}$ .

Proof. This is [ Reference Andersen and ThornerAT21 , proposition 3·4].

Corollary 3·2. Fix $0< \varpi< {1}/{4}-{\theta}/{2}$ . There exists a constant $\delta>0$ such that

\begin{equation*} \Big|\sum_{a,b\leq T^{\varpi}}\frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}}{\sqrt{ab}}\frac{P(a)P(b)}{(ab)^{\frac{1}{\log T}}}(N_{a,b}^{+}(\alpha,\beta)+N_{a,b}^{-}(\alpha,\beta))\Big|\ll T^{1-\delta}. \end{equation*}

Proof. Let $\varepsilon>0$ . First, observe that $|\mu_{\pi}(a)|\ll 1+|\lambda_{\pi}(a)|\ll 1+|\lambda_{\pi}(a)|^2$ . We then apply Lemma 3·1 and bound everything else trivially to obtain

\begin{equation*} \sum_{a,b\leq T^\varpi} \frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}}{\sqrt{ab}} \frac{P(a) P(b)}{(ab)^{\frac{1}{\log T}}} \sum_{\pm} N_{a,b}^{\pm}(\alpha,\beta) \ll T^{\frac{1}{2}+\theta+\varepsilon} \Big(\sum_{a\leq T^\varpi} 1 + \sum_{a\leq T^\varpi} |\lambda_{\pi}(a)|^2 \Big)^2. \end{equation*}

By (2·2), this is $\ll_{f,\varepsilon} T^{\frac{1}{2}+\theta + 2\varpi +\varepsilon}$ . If $\varpi \leq {1}/{4} - {\theta}{2}-\varepsilon$ , then the above display is $\ll T^{1-\varepsilon}$ .

Proposition 3·3. If T is sufficiently large and $\varpi\in(0, {1}/{4}-{\theta}/{2})$ is fixed, then

\begin{equation*} \int_{T/2}^{T}|L(\tfrac{1}{2}+\tfrac{1}{\log T}+it,\pi)M_{\pi}(\tfrac{1}{2}+\tfrac{1}{\log T}+it,T^{\varpi})|^2 dt\ll T. \end{equation*}

Proof. In light of Corollary 3·2, it remains to bound the diagonal contribution. We first note by a calculation identitcal to [ Reference BernardBer15 , lemma 11] that

\begin{multline*}\sum_{a,b\leq T^{\varpi}}\frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}}{\sqrt{ab}}\frac{P(a)P(b)}{(ab)^{\frac{1}{\log T}}}(D_{a,b}^{+}(\alpha,\beta)+D_{a,b}^{-}(\alpha,\beta))\\=\sum_{a,b\leq T^{\varpi}}\frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}}{\sqrt{ab}}\frac{P(a)P(b)}{(ab)^{\frac{1}{\log T}}}(D_{a,b}^{+}(\alpha,\beta)+T^{-2(\alpha+\beta)}D_{a,b}^{+}(-\alpha,-\beta))+O\Big(\frac{T}{\log T}\Big).\end{multline*}

So it suffices for us to estimate

\begin{equation*}I^D(\alpha,\beta)=\sum_{a,b\leq T^{\varpi}}\frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}}{\sqrt{ab}}\frac{P(a)P(b)}{(ab)^{\frac{1}{\log T}}}D_{a,b}^{+}(\alpha,\beta)\end{equation*}

with $\alpha=\beta={1}/{\log T}$ .

Let $\sigma_0 = {1}/{2}+{1}/{\log T}$ . We observe via the Mellin inversion that $I^D(\alpha,\beta)$ equals

\begin{align*}\frac{4}{(\!\log (T^{\varpi}))^2}\int_{-\infty}^{\infty}\frac{1}{(2\pi i)^3}\int_{(1)}\int_{(1)}\int_{(1)}T^{\frac{\varpi(u+v)}{2}}(T^{\frac{u\varpi}{2}}-1)(T^{\frac{v\varpi}{2}}-1)\frac{G(s)}{s}g_{\alpha,\beta}(s,t)\\\times\sum_{\substack{a,b,m,n\geq 1 \\ am=bn}}\frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}\lambda_{\pi}(m)\overline{\lambda_{\pi}(n)}}{a^{\sigma_0+v}b^{\sigma_0+u}m^{\frac{1}{2}+\alpha+s}n^{\frac{1}{2}+\beta+s}}ds\frac{du}{u^2}\frac{dv}{v^2}dt.\end{align*}

By a computation identical to [ Reference BernardBer15 , lemma 6], there exists a product of half-planes containing an open neighborhood of the point $u=v=s=0$ and an Euler product $A_{\alpha,\beta}(u,v,s)$ , absolutely convergent for (u,v,s) in said product of half-planes, such that

\begin{multline*} \sum_{\substack{a,b,m,n\geq 1 \\ am=bn}}\frac{\mu_{\pi}(a)\overline{\mu_{\pi}(b)}\lambda_{\pi}(m)\overline{\lambda_{\pi}(n)}}{a^{\sigma_0+v}b^{\sigma_0+u}m^{\frac{1}{2}+\alpha+s}n^{\frac{1}{2}+\beta+s}}=A_{\alpha,\beta}(u+\tfrac{1}{\log T},v+\tfrac{1}{\log T},s)\\\times \frac{L(1+\alpha+\beta+2s,\pi\otimes\tilde{\pi})L(1+\frac{2}{\log T}+u+v,\pi\otimes\tilde{\pi})}{L(1+\frac{1}{\log T}+\alpha+u+s,\pi\otimes\tilde{\pi})L(1+\frac{1}{\log T}+\beta+v+s,\pi\otimes\tilde{\pi})}.\end{multline*}

By Möbius inversion and a continuity argument, one can prove that $A_{0,0}(0,0,0)=1$ [ Reference BernardBer15 , lemma 7].

Upon choosing $\delta$ sufficiently small and shifting the contours to $\textrm{Re}(u)=\delta$ , $\textrm{Re}(v)=\delta$ , and $\textrm{Re}(s)=-\delta/2$ , we find that

\begin{multline*} I^D(\alpha,\beta) = \frac{4L(1+\alpha+\beta,\pi\otimes\tilde{\pi})}{(2\pi i)^2(\!\log (T^{\varpi}))^2}\int_{\mathbb{R}}w(t)dt \int_{(\delta)}\int_{(\delta)}T^{\frac{\varpi(u+v)}{2}}(T^{\frac{u\varpi}{2}}-1)(T^{\frac{v\varpi}{2}}-1)\\ \times \frac{L(1+\frac{2}{\log T}+u+v,\pi\otimes\tilde{\pi})A_{\alpha,\beta}(u+\tfrac{1}{\log T},v+\tfrac{1}{\log T},0)}{L(1+\frac{1}{\log T}+\alpha+u,\pi\otimes\tilde{\pi})L(1+\frac{1}{\log T}+\beta+v,\pi\otimes\tilde{\pi})}\frac{du}{u^2}\frac{dv}{v^2}+O\Big(\frac{T}{\log T}\Big).\end{multline*}

The contribution from the pole at $u=v=0$ determines the magnitude of the double integral over u and v, and this magnitude is $\asymp_{\pi}(\!\log T)^2$ for $\alpha$ and $\beta$ in our prescribed range. (This follows once we push the u- and v-contours to the left using (2·3).) Since $\int_{\mathbb{R}}w(t)dt\asymp T$ by hypothesis, we combine all preceding contributions and choose $\alpha=\beta=1/\log T$ to conclude the desired bound.

Corollary 3·4. If T is sufficiently large and $\varpi\in(0, {1}/{4}-{\theta}/{2})$ is fixed, then

\begin{equation*} \int_{T/2}^{T}|L(\tfrac{1}{2}+\tfrac{1}{\log T}+it,\pi)M_{\pi}(\tfrac{1}{2}+\tfrac{1}{\log T}+it,T^{\varpi})-1|^2 dt\ll T. \end{equation*}

Proof. This follows from Proposition 3·3 and the Cauchy–Schwarz inequality.

We prove a corresponding estimate on a vertical line to the right of $\textrm{Re}(s)=1$ .

Lemma 3·5. If $\varpi\in(0, {1}/{4}-{\theta}/{2})$ and $A>\theta$ are fixed and T is sufficiently large, then

\begin{equation*}\int_{T/2}^T|L(1+A+it,\pi)M_{\pi}(1+A+it,T^{\varpi})-1|^2 dt\ll_{A} T^{1+(\theta-A-\frac{1}{2})\varpi}(\!\log T)^{15}.\end{equation*}

Proof. Let $A>\theta$ . It follows immediately from [ Reference Montgomery and VaughanMV74 , corollary 3] that if $T>1$ and $(b_n)$ is any sequence of complex numbers satisfying $\sum_{n}n|b_n|^2<\infty$ , then

(3·4) \begin{equation} \int_{T/2}^{T}\Big|\sum_{n=1}^{\infty}b_n n^{-it}\Big|^2 dt=\sum_{n=1}^{\infty}|b_n|^2(T/2+O(n)). \end{equation}

We define $a_n$ by the identity

\begin{align*}L(1+A+it,\pi)M_{\pi}(1+A+it,T^{\varpi})-1 = \sum_{n=1}^{\infty}a_n n^{-1-A-it}.\end{align*}

By (3·1), (3·2), and (3·3), we have that $a_n=0$ for all $n\leq T^{\varpi/2}$ and $|a_n|^2\ll (n^{\theta}d_4(n))^2\ll n^{2\theta}d_{16}(n)$ , where $d_k(n)$ is the n-th Dirichlet coefficient of $\zeta(s)^k$ . The desired result follows once we apply (3·4) with $b_n = a_n n^{-1-A}$ .

Proof of Theorem 1·1 . We use Gabriel’s convexity principle [ Reference TitchmarshTit86 , section 7·8] to interpolate the bounds in Corollary 3·4 and Lemma 3·5. In particular, if $0<\varpi< {1}/{4}-{\theta}/{2}$ and $A>\theta$ are fixed and $c=\varpi(1+2A-2\theta)/(1+2A)$ , then in the range ${1}/{2}+{1}/{\log T}\leq\sigma\leq 1+A$ , we have

(3·5) \begin{equation} \begin{aligned} &\int_{T/2}^T|L(\sigma+it,\pi)M_{\pi}(\sigma +it,T^{\varpi})-1|^2 dt\\&\ll T^{\frac{1+A-\sigma}{1+A-(\frac{1}{2}+\frac{1}{\log T})}}(T^{1+(\theta-A-\frac{1}{2})\varpi}(\!\log T)^{15})^{1-\frac{1+A-\sigma}{1+A-(\frac{1}{2}+\frac{1}{\log T})}}\ll T^{ 1 - c(\sigma - \frac{1}{2})}. \end{aligned} \end{equation}

Define $\Phi(s) \;:\!=\; 1- (1- L(s,\pi) M_{\pi}(s,T^{\varpi}))^2$ . By construction, if $\alpha\in\mathbb{C}$ , then

\begin{equation*} \mathop{\textrm{ord}}_{s=\alpha}\Phi(s)\geq \mathop{\textrm{ord}}_{s=\alpha}L(s,\pi)M_{\pi}(s,T^{\varpi}). \end{equation*}

For any $M \ge 1$ , let $C_M$ be the rectangular contour with corners $\sigma + iT/2$ , $\sigma + iT$ , $M + iT/2$ , and $M + i T$ . Applying Littlewood’s lemma ([ Reference TitchmarshTit58 , pp. 132–133]) and letting $M \to \infty$ , we have

\begin{align*} & \int_{\sigma}^{1}(N_{\pi}(\sigma', T) - N_{\pi}(\sigma',\tfrac{T}{2}))d \sigma'\le \lim_{M \to \infty} \frac{1}{2 \pi} \int_{C_M} \log \Phi(s) ds \\ & = \frac{1}{2 \pi} \int_{T/2}^{T} \log | \Phi(\sigma+it)| dt + \frac{1}{2\pi} \int_{\sigma}^{\infty} \arg( \Phi(x+i T)) dx - \frac{1}{2\pi} \int_{\sigma}^{\infty} \arg(\Phi(x+\tfrac{iT}{2}) )dx. \end{align*}

In view of the bound $\log|1 + z| \le |z|$ , it follows from (3·5) that

\begin{equation*} \frac{1}{2 \pi} \int_{T/2}^{T} \log | \Phi(\sigma+it)| dt\leq \int_{T/2}^T|L(\sigma+it,\pi)M_{\pi}(\sigma +it,T^{\varpi})-1|^2 dt\ll T^{ 1 - c(\sigma - \frac{1}{2})}. \end{equation*}

For the second and third integrals, we consider the integrals over $x \le 1$ and over $x >1$ separately. For $x \in (1, \infty)$ we can trivially bound the Dirichlet series as

\begin{equation*} |1- L(x + iT,\pi) M_{\pi}(x+iT,T^{\varpi})| \le \sum_{n=2}^{\infty} |a_n| n^{-x}\ll 2^{-x}, \end{equation*}

where $(a_n)$ is a certain sequence of complex numbers such that $|a_n|\ll_{\varepsilon}n^{\theta+\varepsilon}$ for any fixed $\varepsilon>0$ and all $n\geq 2$ . Thus, we have

\begin{equation*} |\arg( 1- (1- L(x + iT,\pi) M_{\pi}(x+iT,T^{\varpi}))^2))| \ll 2^{-x}, \end{equation*}

so

\begin{equation*} \Big|\int_1^{\infty} \arg(\Phi(x+iT) )dx\Big|,\;\Big|\int_1^{\infty} \arg(\Phi(x+2iT) )dx\Big|\ll 1. \end{equation*}

To handle the integrals for ${1}/{2}+{1}/{\log T}\leq x\leq 1$ , we use the trivial bound

\begin{equation*} \Big|\int_{\sigma}^{1}\arg(\Phi(x+2iT))dx\Big|\leq (1-\sigma)\max_{\sigma\leq x\leq 1}|\arg(\Phi(x+2iT))|\ll \log T. \end{equation*}

A proof of the final bound is contained within the proof of [ Reference Iwaniec and KowalskiIK04 , theorem 5·8]. The corresponding integral for $\Phi(x+iT)$ has the same bound.

By the preceding work, it follows by dyadic decomposition that

\begin{equation*} \int_{\sigma}^{1} N_{\pi}(\sigma', T) d\sigma' \ll T^{1 - c(\sigma - \frac{1}{2})},\qquad \frac{1}{2}+\frac{1}{\log T}\leq\sigma\leq 1. \end{equation*}

This estimate, the mean value theorem for integrals, and the fact that $N_{\pi}(\sigma,T)$ is monotonically decreasing as $\sigma$ increases together imply that

\begin{align*} N_{\pi}(\sigma,T)&\leq \frac{1}{\sigma-(\sigma-\frac{1}{\log T})}\int_{\sigma-\frac{1}{\log T}}^{\sigma}N_{\pi}(\sigma',T)d\sigma'\\ &\ll \frac{1}{\sigma-(\sigma-\frac{1}{\log T})}\int_{\sigma-\frac{1}{\log T}}^{1}N_{\pi}(\sigma',T)d\sigma'\ll T^{1-c(\sigma-\frac{1}{2})}\log T. \end{align*}

If ${1}/{2}\leq \sigma\leq {1}/2 +{1}/{\log T}/2$ , then (1·4) implies that $N_{\pi}(\sigma,T)\ll T\log T\asymp T^{1-c(\sigma-{1}/{2})}\log T$ .

To finish the proof, note that if $\theta=0$ , then for all $A>0$ , we have $c=\varpi$ . If $\theta>0$ , then fix $0<\varepsilon<\theta\varpi/(\theta+{1}/{2})$ and choose $A = {\theta\varpi}/{\varepsilon}-{1}/{2}$ . With these choices, we find that $c>\varpi-\varepsilon$ . Theorem 1·1 now follows.

4. Proof of Theorem 1·3

We begin with a few preliminary lemmas. Throughout the section, $\theta$ is an admissible exponent toward the generalised Ramanujan conjecture as in Theorem 1·1. Our first result is an n-dimensional version of the Riemann–Lebesgue lemma.

Lemma 4·1. Let $J \geq 1$ . Suppose that $h\in C^{n+2}(\mathbb{T}^n)$ has the Fourier expansion

\begin{equation*} h(\boldsymbol{t}) = \sum_{\boldsymbol{m} \in \mathbb{Z}^n} c_{\boldsymbol{m}} e^{2 \pi i (\boldsymbol{m} \cdot \boldsymbol{t})}. \end{equation*}

We have $|c_{\boldsymbol{m}}|\ll_h \|\boldsymbol{m}\|_2^{-n-2}$ , and consequently, we have

\begin{equation*} h(\boldsymbol{t}) = \sum_{\substack{\boldsymbol{m} \in \mathbb{Z}^n \\ \|\boldsymbol{m}\|_2\leq J}} c_{\boldsymbol{m}} e^{2 \pi i (\boldsymbol{m} \cdot \boldsymbol{t})} + O_h(J^{-2}). \end{equation*}

Proof. We have

(4·1) \begin{equation} c_{\boldsymbol{m}} = \int_{\mathbb{T}^n} h(\boldsymbol{t}) e^{- 2 \pi i (\boldsymbol{m} \cdot \boldsymbol{t})} {d}\boldsymbol{t}. \end{equation}

Let $\boldsymbol{m} = (m_1, m_2, \ldots, m_n)$ . Choose $j \in \{1, \ldots, n\}$ such that $|m_j|=\|\boldsymbol{m}\|_{\infty}$ . Integrate (4·1) by parts for $n+2$ times with respect to the coordinate $t_j$ of $\boldsymbol{t}$ so that

(4·2) \begin{equation} c_{\boldsymbol{m}} = \frac{(\!-\!1)^{n+2}}{(2\pi m_j)^{n+2}}\int_{\mathbb{T}^n} \Big( \frac{\partial^{n+2}}{\partial t_j^{n+2}} h(\boldsymbol{t}) \Big) e^{-2\pi i (\boldsymbol{m} \cdot \boldsymbol{t})} {d}\boldsymbol{t}. \end{equation}

Since $\sqrt{n}\|\boldsymbol{m}\|_{\infty}\geq \|\boldsymbol{m}\|_2$ , the desired result follows from the triangle inequality.

Lemma 4·2. Let $x > 1$ and $T \ge 2$ , and let $\langle x\rangle$ being the closest integer to x. We have

\begin{align*} \sum_{|\gamma|\leq T} x^{\rho} = -\frac{\Lambda_{\pi}(\langle x \rangle)}{\pi} \cdot \frac{e^{iT \log(x / \langle x \rangle)} - 1}{i \log(x / \langle x \rangle)} + O \Big( x^{1 + \theta}(\!\log(2 x) + \log T) + \frac{\log T}{\log x} \Big). \end{align*}

Proof. This is [ Reference Ford, Soundararajan and ZaharescuFSZ09 , lemma 2] with $\varepsilon=\theta$ .

Using Theorem 1·1 and Lemma 4·2, we prove an analogue of [ Reference Ford and ZaharescuFZ05 , (3·8)].

Lemma 4·3. Let c be as in Theorem 1·1. If $1< x< \exp(({c}/{3})({\log T}/{\log\log T}))$ , then

\begin{equation*} \sum_{|\gamma| \leq T} x^{i \gamma} = \sum_{|\gamma| \leq T}x^{\rho - \frac{1}{2}} +O\Big(\frac{T (\!\log x)^2}{\log T}+\frac{T}{(\!\log T)^2}\Big). \end{equation*}

Proof. Let $\delta = (({3}/{c})({\log\log T}/{\log T}))$ , so $0 < \delta \log x < 1$ . By Theorem 1·1, we have that

\begin{align*} \Big|\sum_{\substack{|\gamma|\leq T \\ |\beta - \frac{1}{2}| \ge \delta}} (x^{i \gamma} - x^{\rho - \frac{1}{2}})\Big| \ll \sum_{\substack{|\gamma|\leq T \\ \beta \ge \frac{1}{2} + \delta}} x^{\beta - \frac{1}{2}} \ll x^\delta N_{\pi}(\tfrac{1}{2} + \delta, T) \\ + \log x \int_{\frac{1}{2} + \delta}^{1} x^{\sigma - \frac{1}{2}} N_{\pi}(\sigma, T) d \sigma \ll \frac{T}{(\!\log T)^2}. \end{align*}

By the functional equation for $L(s,\pi)$ , $\beta+i\gamma$ is a nontrivial zero if and only if $1-\beta+i\gamma$ is a nontrivial zero. Therefore, we have

(4·3)

Note that $x^{\beta-1/2}+x^{-(\beta-1/2)}-2=(2\sinh({1}/{2}(\beta-{1}/{2})\log x))^2$ . Note that if $0<\beta-{1}/{2}<\delta$ , then $0<({1}/{2})(\beta-{1}/{2})\log x<{1}/{2}$ . Since $y<\sinh(y)<2y$ for $0<y<{1}/{2}$ , (4·3) is

\begin{align*} \ll (\!\log x)^2 \sum_{\substack{|\gamma|\leq T \\ 0 < \beta-\frac{1}{2} < \delta}} \Big( \beta - \frac{1}{2} \Big)^2 & \ll (\!\log x)^2 \int_0^{\delta} \sigma N_\pi(\tfrac{1}{2}+\sigma,T)d\sigma\ll \frac{T(\!\log x)^2}{\log T}. \end{align*}

The desired result follows.

Proof of Theorem 1·3. Let $h\in C^{n+2}(\mathbb{T}^n)$ , and let $\boldsymbol{\alpha}$ satisfy (1·12). Let $J\in[1, 100\log(eT)]$ . We begin with the expansion

\begin{align*} \sum_{|\gamma| \le T} h(\gamma \boldsymbol{\alpha}) & = \sum_{|\gamma| \le T} \sum_{\boldsymbol{m} \in\mathbb{Z}^n} c_{\boldsymbol{m}} e^{2 \pi i \gamma (\boldsymbol{m} \cdot \boldsymbol{\alpha})} \\ & = N_{\pi}(T) \int_{\mathbb{T}^n} h(\boldsymbol{t}) {d}\boldsymbol{t} + \sum_{|\gamma| \le T}\Big(\sum_{1 \le \|\boldsymbol{m}\|_{2} \le J} + \sum_{\|\boldsymbol{m}\|_{2} > J}\Big) c_{\boldsymbol{m}} e^{2 \pi i \gamma (\boldsymbol{m} \cdot \boldsymbol{\alpha})}. \end{align*}

By Lemma 4·1, we have

(4·4) \begin{equation} \sum_{|\gamma| \le T} h(\gamma \boldsymbol{\alpha}) -N_{\pi}(T) \int_{\mathbb{T}^n} h(\boldsymbol{t}) {d}\boldsymbol{t} = \sum_{|\gamma| \le T}\sum_{1 \le \|\boldsymbol{m}\|_{2} \le J}c_{\boldsymbol{m}}e^{2\pi i\gamma(\boldsymbol{m}\cdot\boldsymbol{\alpha})}+O\Big(\frac{N_{\pi}(T)}{J^{2}}\Big). \end{equation}

Write $x_{\boldsymbol{m}}=e^{2\pi(\boldsymbol{m}\cdot\boldsymbol{\alpha})}$ . Since $x_{-\boldsymbol{m}}^{i\gamma}=x_{\boldsymbol{m}}^{-i\gamma}$ and $c_{-\boldsymbol{m}}=-c_{\boldsymbol{m}}$ , we find that (4·4) equals

\begin{equation*} 2 \Re \sum_{\substack{1 \le \|\boldsymbol{m}\|_{2} \le J \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0}} c_{\boldsymbol{m}} \sum_{0 < \gamma \le T} x_{\boldsymbol{m}}^{i \gamma} + O \Big( \frac{N_{\pi}(T)}{J^{2}} \Big). \end{equation*}

Choose J so that $\|\boldsymbol{m}\|_2\leq J$ implies $\log x_{\boldsymbol{m}}<(({c}/{3})({\log T}/{\log\log T}))$ (with c as in Theorem 1·1). By Lemma 4·3 and the above display, (4·4) equals

\begin{equation*} 2 \Re \sum_{\substack{ 1 \le \|\boldsymbol{m}\|_{2} \le J \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0}} c_{\boldsymbol{m}} \sum_{|\gamma|\leq T} x_{\boldsymbol{m}}^{\rho - \frac{1}{2}} + O\Big(\frac{N_{\pi}(T)}{J^{2}} + \frac{T}{\log T} \sum_{1 \le \|\boldsymbol{m}\|_{2} \le J} \frac{1}{\|\boldsymbol{m}\|_2^{n+2} }\Big((\!\log x_{\boldsymbol{m}})^2+\frac{1}{\log T}\Big)\Big). \end{equation*}

Since $\log x_{\boldsymbol{m}}\leq 2\pi\|\boldsymbol{m}\|_2 \|\boldsymbol{\alpha}\|_2$ , it follows from our preliminary bound for J that (4·4) equals

(4·5)

We apply Lemma 4·2 to conclude that (4·5) equals

(4·6) \begin{equation} -\frac{2T}{\pi} \Re \sum_{\substack{1 \le \|\boldsymbol{m}\|_{2} \le J \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(\langle x_{\boldsymbol{m}} \rangle)}{\sqrt{x_{\boldsymbol{m}}}} \cdot \frac{e^{iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}} - 1} {iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}} + \mathcal{E}, \end{equation}

where $\mathcal{E}$ satisfies (note that $\log x_{\boldsymbol{m}}=2\pi(\boldsymbol{m}\cdot\boldsymbol{\alpha})$ )

\begin{equation*} |\mathcal{E}|\ll \sum_{\substack{1 \le \|\boldsymbol{m}\|_{2} \le J \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0}} x_{\boldsymbol{m}}^{1 + \theta} ( \log(2 x_{\boldsymbol{m}}) + \log T ) + \sum_{\substack{1 \le \|\boldsymbol{m}\|_{2} \le J \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0}} \frac{\log T}{\boldsymbol{m}\cdot\boldsymbol{\alpha}} + \Big( \frac{N_{\pi}(T)}{J^{2}} + \frac{T\log\log T}{\log T} \Big). \end{equation*}

Our choice of J ensures that $\log(2x_{\boldsymbol{m}})\ll \log T$ , so it follows from (1·12) that

\begin{equation*} |\mathcal{E}| \ll \sum_{\substack{1 \le \|\boldsymbol{m}\|_{2} \le J \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0}} ( x_{\boldsymbol{m}}^{1 + \theta} + e^{\|\boldsymbol{m}\|_2})\log T + \frac{N_{\pi}(T)}{J^{2}} + \frac{T\log\log T}{\log T}. \end{equation*}

Since $x_{\boldsymbol{m}}^{1+\theta}=e^{2\pi(1+\theta)(\boldsymbol{m}\cdot\boldsymbol{\alpha})}\leq e^{4\pi\|\boldsymbol{m}\|_2 \|\boldsymbol{\alpha}\|_2}$ , it follows that

(4·7) \begin{equation} |\mathcal{E}| \ll e^{(n+4\pi\|\boldsymbol{\alpha}\|_2)J}\log T + \frac{N_{\pi}(T)}{J^{2}} + \frac{T\log\log T}{\log T}. \end{equation}

We choose $J = (\!\log T)^{2/3}$ . Since $N_{\pi}(T)\ll T\log T$ , (4·6) equals

(4·8) \begin{equation} -\frac{2T}{\pi} \Re \sum_{\substack{1 \le \|\boldsymbol{m}\|_{2} \le J \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(\langle x_{\boldsymbol{m}} \rangle)}{\sqrt{x_{\boldsymbol{m}}}}\cdot \frac{e^{iT \log\frac{x_{\boldsymbol{m}}}{\langle x_{\boldsymbol{m}} \rangle}} - 1}{iT \log\frac{x_{\boldsymbol{m}}}{\langle x_{\boldsymbol{m}} \rangle}} + O \Big(\frac{T}{\left( \log T \right)^{1/3}}\Big). \end{equation}

Observe that if $x_{\boldsymbol{m}}\neq\langle x_{\boldsymbol{m}}\rangle$ , then $|e^{iT\log\frac{x_{\boldsymbol{m}}}{\langle x_{\boldsymbol{m}}\rangle}}-1|\leq |iT\log({x_{\boldsymbol{m}}}/{\langle x_{\boldsymbol{m}}\rangle})|$ . Also, since $0\leq\theta<{1}/{2}$ , it follows that $|\Lambda_{\pi}(\langle x_{\boldsymbol{m}}\rangle)|\ll \sqrt{x_{\boldsymbol{m}}}$ . The proof of Lemma 4·1 ensures that $|c_{\boldsymbol{m}}|\ll \|\boldsymbol{m}\|_{2}^{-n-2}$ , so the sum over $\boldsymbol{m}$ converges absolutely. By the decay of $|c_{\boldsymbol{m}}|$ , our choice of J, and (4·7), (4·8) equals

(4·9) \begin{multline} -\frac{2T}{\pi} \Re \Big(\sum_{\substack{ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0 \\ x_{\boldsymbol{m}}=\langle x_{\boldsymbol{m}}\rangle}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(x_{\boldsymbol{m}})}{\sqrt{x_{\boldsymbol{m}}}}+\sum_{\substack{ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0 \\ x_{\boldsymbol{m}}\neq \langle x_{\boldsymbol{m}}\rangle}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(\langle x_{\boldsymbol{m}}\rangle)}{\sqrt{x_{\boldsymbol{m}}}} \cdot \frac{e^{iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}} - 1} {iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}}\Big)\\ +O \Big(\frac{T}{(\!\log T)^{1/3}}\Big). \end{multline}

In particular, each sum over $\boldsymbol{m}$ converges absolutely.

To handle the sum over $\boldsymbol{m}$ such that $x_{\boldsymbol{m}}\neq\langle x_{\boldsymbol{m}}\rangle$ , we note (by absolute convergence) that for all $\varepsilon>0$ , there exists $M_{\varepsilon}=M_{\varepsilon}({\boldsymbol \alpha},h)>0$ such that

\begin{equation*} \Big| \sum_{\substack{ \|\boldsymbol{m}\|_{2} >M_{\varepsilon} \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0 \\ x_{\boldsymbol{m}}\neq \langle x_{\boldsymbol{m}}\rangle}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(\langle x_{\boldsymbol{m}} \rangle)}{\sqrt{x_{\boldsymbol{m}}}} \cdot \frac{e^{iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}} - 1} {iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}}\Big|<\varepsilon.\end{equation*}

Consequently, we have

\begin{multline*} \Big|-\frac{2T}{\pi} \Re \sum_{\substack{\|\boldsymbol{m}\|_{2} \geq 1 \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0 \\ x_{\boldsymbol{m}}\neq \langle x_{\boldsymbol{m}}\rangle}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(\langle x_{\boldsymbol{m}} \rangle)}{\sqrt{x_{\boldsymbol{m}}}} \cdot \frac{e^{iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}} - 1} {iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}}\Big|\\\leq \Big|\Re \sum_{\substack{ \|\boldsymbol{m}\|_{2} \leq M_{\varepsilon} \\ \boldsymbol{m} \cdot \boldsymbol{\alpha} > 0 \\ x_{\boldsymbol{m}}\neq \langle x_{\boldsymbol{m}}\rangle}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(\langle x_{\boldsymbol{m}} \rangle)}{\sqrt{x_{\boldsymbol{m}}}} \cdot \frac{e^{iT \log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}} - 1} {\log\frac{x_{\boldsymbol{m}} }{ \langle x_{\boldsymbol{m}} \rangle}}\Big|+\varepsilon T.\end{multline*}

As we let $\varepsilon\to 0$ sufficiently slowly, we conclude that (4·6) equals o(T), as desired.

For the sum over $\boldsymbol{m}$ such that $x_{\boldsymbol{m}} = \langle x_{\boldsymbol{m}} \rangle$ , which means $x_{\boldsymbol{m}} \in \mathbb{Z}$ , the terms which are not prime powers will vanish due to the presence of the von Mangoldt function. For the other terms which are prime powers, we have $\boldsymbol{m} \cdot \boldsymbol{\alpha} = {k \log p}/{2 \pi}$ for some $k \in \mathbb{N}$ by the definition of $x_{\boldsymbol{m}}$ . This will only happen when $\boldsymbol{m}$ is a multiple of $q_j \boldsymbol{b}_j$ for some $j \in \{1, \ldots, r\}$ due to our choice of the vector $\boldsymbol{\alpha}$ in (1·13), so

\begin{align*} -\frac{2}{\pi} \Re \sum_{\substack{\boldsymbol{m} \cdot \boldsymbol{\alpha} > 0 \\ x_{\boldsymbol{m}}=\langle x_{\boldsymbol{m}}\rangle}} \frac{c_{\boldsymbol{m}} \Lambda_{\pi}(x_{\boldsymbol{m}})}{\sqrt{x_{\boldsymbol{m}}}}= -\frac{2}{\pi} \Re \sum_{j = 1}^{r} \sum_{l = 1}^{\infty} \frac{\Lambda_\pi(p_j^{a_j l})}{p_j^{a_j l/2}} c_{l q_j \boldsymbol{b}_j}= \int_{\mathbb{T}^n} h(\boldsymbol{t}) g_{\pi, \boldsymbol{\alpha}}(\boldsymbol{t}){d}\boldsymbol{t}.\end{align*}

The last equation holds because of (1·14) and (4·1).

5. Proof of Corollary 1·4

Let $\mathbb{B}\subseteq\mathbb{T}^n$ be a product of n subintervals of $\mathbb{T}$ for which $|\int_{\mathbb{B}}g_{f,\boldsymbol{\alpha}}(\boldsymbol{t}){d}\boldsymbol{t}|$ attains its maximum. For $\varepsilon>0$ , let $\varphi_{\varepsilon}\;:\;\mathbb{T}^n\to\mathbb{R}$ satisfy the following conditions:

  1. (i) $\varphi_{\varepsilon}$ is nonnegative and infinitely differentiable;

  2. (ii) $\varphi_{\varepsilon}$ is supported on a compact subset of $U_{\varepsilon}\;:\!=\;\{\boldsymbol{t}\in \mathbb{T}^n\colon \|\boldsymbol{t}\|_2<\varepsilon\}$ ; and

  3. (iii) $\int_{\mathbb{T}^n}\varphi_{\varepsilon}(\boldsymbol{t}){d}\boldsymbol{t}=1$ .

Let $\textbf{1}_{\mathbb{B}}$ be the indicator function of $\mathbb{B}$ , and define $h_{\varepsilon}(\boldsymbol{t})=\int_{\mathbb{T}^n}\varphi_{\varepsilon}(\boldsymbol{t})\textbf{1}_{\mathbb{B}}(\boldsymbol{x}-\boldsymbol{t}){d}\boldsymbol{t}$ . Then $h_{\varepsilon}$ is infinitely differentiable, and thus Theorem 1·3 holds with r arbitrarily large for $h=h_{\varepsilon}$ . Consequently, for any fixed $r\geq n+2$ , we have

\begin{equation*}\int_{\mathbb{T}^n}h_{\varepsilon}(\boldsymbol{y})\Big(\sum_{\substack{|\gamma|\leq T \\ \{\gamma\boldsymbol{\alpha}\}\in\mathbb{B}+\boldsymbol{y}}}1-\textrm{vol}(\mathbb{B})N_{\pi}(T)\Big)d\boldsymbol{y}=T\int_{U_{\varepsilon}}h_{\varepsilon}(\boldsymbol{y})\int_{\mathbb{B}+\boldsymbol{y}}g_{f,\boldsymbol{\alpha}}(\boldsymbol{x})d\boldsymbol{x}d\boldsymbol{y} + o(T).\end{equation*}

It follows from our definition of $g_{f,\boldsymbol{\alpha}}(\boldsymbol{t})$ in (1·14) that $g_{f,\boldsymbol{\alpha}}(\boldsymbol{t})\ll 1$ , hence

\begin{equation*} \Big|\int_{\mathbb{B}+\boldsymbol{y}}g_{f,\boldsymbol{\alpha}}(\boldsymbol{x})d\boldsymbol{x}-\int_{\mathbb{B}}g_{f,\boldsymbol{\alpha}}(\boldsymbol{x})d\boldsymbol{x}\Big|\ll \varepsilon\end{equation*}

for all $\boldsymbol{y}\in U_{\varepsilon}$ . Thus, we have

\begin{equation*}\int_{\mathbb{T}^n}h_{\varepsilon}(\boldsymbol{y})\Big(\sum_{\substack{|\gamma|\leq T \\ \{\gamma\boldsymbol{\alpha}\}\in\mathbb{B}+\boldsymbol{y}}}1-\textrm{vol}(\mathbb{B})N_{\pi}(T)\Big)d\boldsymbol{y}= T\int_{\mathbb{B}}g_{f,\boldsymbol{\alpha}}(\boldsymbol{t}){d}\boldsymbol{t}+O(\varepsilon T) + o(T).\end{equation*}

By the mean value theorem, there exists $\boldsymbol{y}\in U_{\varepsilon}$ such that

\begin{equation*} \Big|\sum_{\substack{|\gamma|\leq T \\ \{\gamma\boldsymbol{\alpha}\}\in\mathbb{B}+\boldsymbol{y}}}1-\textrm{vol}(\mathbb{B})N_{\pi}(T)\Big| \geq T\Big|\int_{\mathbb{B}}g_{f,\boldsymbol{\alpha}}(\boldsymbol{t}){d}\boldsymbol{t}\Big| + O(\varepsilon T) + o(T).\end{equation*}

The proof follows once we let $\varepsilon \to 0$ sufficiently slowly as a function of T.

6. Proofs of Corollaries 1·5-1·8

Throughout Sections 6·3-6·5, all levels are assumed to be squarefree.

6·1. An estimate for the density function

We begin with a useful estimate for the density function $g_{f,\boldsymbol{\alpha}}$ associated to a holomorphic cuspidal newform $f\in S_k^{\textrm{new}}(\Gamma_0(q))$ as in Section 2.2.

Lemma 6·1. Let $f \in S_k (\Gamma_0(q))$ be a newform and let $\alpha = {a\log p}/{2 \pi q}$ . Then we have

\begin{equation*} \Big|g_{f, \alpha}(t) + \frac{2}{\pi} \frac{\Lambda_{\pi} (p^{a})}{p^{a/2}} \cos (2 \pi q t) \Big| \leq \frac{4 \log p}{\pi p^a (1 - p^{-a/2})}. \end{equation*}

Proof. In this case, Deligne’s bound implies that

\begin{align*} & \Big|g_{f,\alpha}(t)+\frac{2}{\pi}\frac{\Lambda_{\pi}(p^a)}{p^{a/2}}\cos(2\pi q t)\Big| \\ & = \Big|\frac{2}{\pi} \sum_{\ell = 2}^{\infty} \frac{\Lambda_{\pi}(p^{a \ell})}{p^{\frac{a \ell }{2}}} \cos ( 2 \pi q \ell t)\Big| \le \sum_{\ell=2}^{\infty} \frac{ 2 \log p }{p^{a \ell /2}} = \frac{2 \log p}{p^a (1 - p^{-a /2}) }. \end{align*}

6·2. Proof of Corollary 1·5

First, we prove a simple criterion for $f_1$ winning the $({\log p}/{2\pi}, h)$ -race. From Lemma 6·1, we obtain

\begin{align*} & \int_\mathbb{T} h(t) ( g_{f_1, \alpha}(t) - g_{f_2, \alpha}(t) ) dt > \frac{(\lambda_{f_2}(p) - \lambda_{f_1}(p)) 2 \log p}{\pi \sqrt{p}} \int_\mathbb{T} h(t) \cos(2 \pi t)dt \\ & \quad - \frac{\int_\mathbb{T} h(t) dt \cdot 8 \log p}{\pi p (1 - p^{-1/2}) }.\end{align*}

Consequently, the inequality

(6·1) \begin{equation}(\lambda_{f_2}(p) - \lambda_{f_1}(p))\int_\mathbb{T} h(t) \cos(2 \pi t)dt > \frac{4 \int_{\mathbb{T}} h(t) dt}{\sqrt{p}(1-p^{-1/2})},\end{equation}

implies that

\begin{equation*} \int_\mathbb{T} h(t) ( g_{f_1, \alpha}(t) - g_{f_2, \alpha}(t) ) dt > 0,\end{equation*}

which by Theorem 1·3 tells us that $f_1$ wins the $({\log p}/{2 \pi}, h)$ -race.

Throughout the proof, we let $ k_h \;:\!=\; \int_\mathbb{T} h(t) \cos(2 \pi t)dt$ . The number of p for which $f_1$ wins the race is equal to $T_1 - T_2 + T_3$ , where

\begin{align*} T_1 &\;:\!=\; \# \{ p \le X\;:\; k_h(\lambda_{f_2} (p) - \lambda_{f_1}(p)) > 0 \}, \\ T_2 &\;:\!=\; \# \{ p \le X\;:\; f_1 \mbox{ loses the $(\alpha,h)$-race, and } k_h( \lambda_{f_2} (p) - \lambda_{f_1}(p)) > 0 \},\\ T_3 &\;:\!=\; \# \{ p \le X\;:\; f_1 \mbox{ wins the $(\alpha,h)$-race, and } k_h( \lambda_{f_2} (p) - \lambda_{f_1}(p)) \le 0 \}.\end{align*}

From the symmetry of $\mu_{ST,2}$ , we see that $\nu(\{ (x,y) \in [\!-\!2,2]^2\;:\; x-y > 0\}) = {1}/{2}$ . By Corollary 2·2 with $\mathcal{I} = (0,4)$ , we have

\begin{equation*} T_1 = \frac{1}{2} \pi(X) + O\Big( \pi(X) \frac{\sqrt{\log\log\log X}}{(\!\log\log X)^{1/4}} \Big).\end{equation*}

We have to show that $T_2$ and $T_3$ are both $O( \pi(X) ({\sqrt{\log\log\log X}}/{(\!\log\log X)^{1/4}}))$ . Note that

\begin{equation*}T_2 = \# \{ \sqrt{X} \le p \le X\;:\; f_1 \mbox{ loses the $(\alpha, h)$-race, and } k_h(\lambda_{f_2}(p) - \lambda_{f_1}(p)) > 0 \} + O(\pi(\sqrt{X})).\end{equation*}

If $p \ge \sqrt{X}$ and $f_1$ loses the $(\alpha, h)$ -race and $k_h(\lambda_{f_2}(p) - \lambda_{f_1}(p)) > 0$ , then by (6·1), we have

\begin{equation*} k_h(\lambda_{f_2}(p) - \lambda_{f_1}(p)) \in \Big(0, \frac{4 \int_{\mathbb{T}} h(t) dt }{\sqrt{p}(1-p^{-1/2}) } \Big] \subseteq \Big( 0, \frac{4 \int_{\mathbb{T}} h(t) dt}{X^{\frac{1}{4}}(1-X^{-1/2})} \Big].\end{equation*}

Denoting by $J_X$ the rightmost interval in the preceding display, we have

\begin{align*} \# & \{ p \le X\;:\; f_1 \mbox{ loses the $(\alpha, h)$-race, and } k_h(\lambda_{f_2}(p) - \lambda_{f_1}(p)) > 0 \} \\ & \le \# \{ p \le X\;:\; \lambda_{f_2}(p) - \lambda_{f_1}(p) \in J_X \} + O(\pi(\sqrt{X})).\end{align*}

By Corollary 2·2, this is at most

\begin{multline*} \# \{ p \le X\;:\; f_1 \mbox{ loses the $(\alpha, h)$-race, and }k_h( \lambda_{f_2} (p) - \lambda_{f_1}(p)) > 0 \} \\ \leq \nu \Big( |k_h|^{-1} J_X \Big) \pi(X) +O\Big(\pi(X) \frac{\sqrt{\log\log\log X}}{(\!\log\log X)^{1/4}}\Big).\end{multline*}

Since $\nu(|k_h|^{-1} J_X) = O( | J_X | ) = O(X^{-1/4})$ , it follows that

\begin{equation*} \# \{p \le X\;:\; f_1 \mbox{ loses the $(\alpha, h)$-race, and } k_h(\lambda_{f_2}(p) - \lambda_{f_1}(p)) > 0 \} = O\Big(\pi(X) \frac{\sqrt{\log\log\log X}}{(\!\log\log X)^{1/4}}\Big).\end{equation*}

If the conditions for $T_3$ are true, then

\begin{equation*} k_h( \lambda_{f_2}(p) - \lambda_{f_1}(p) )\in \Big[- \frac{4 \int_{\mathbb{T}} h(t) dt }{\sqrt{p}(1-p^{-1/2}) }, 0 \Big].\end{equation*}

Therefore, $T_3\ll \pi(X) ({\sqrt{\log\log\log X}}/{(\!\log\log X)^{1/4}})$ by the argument used to bound $T_2$ .

The result follows from the estimate shown for $T_1$ and the bounds for $T_2$ and $T_3$ .

6·3. Proof of Corollary 1·6

Proof. From Theorem 1·3, Lemma 6·1, and (2·8) we have

(6·2) \begin{equation} H\Big(f_1, f_2, h, \frac{\log p}{2 \pi}\Big) = \frac{2 k_h}{\pi} \cdot \frac{\log p \cdot (\lambda_{f_2}(p) - \lambda_{f_1}(p))}{p^{1 /2}} + O_{h} \Big( \frac{\log p}{p} \Big). \end{equation}

Consider the statements

(6·3)

and

(6·4)

Defining

we have

\begin{align*} \# \Big\{ p \in [(1 - \varepsilon_X)X, X]\;:\; \frac{\sqrt{X}}{\log{X}} H\Big(f_1, f_2, h, \frac{\log{p}}{2 \pi}\Big) \in \mathcal{I} \Big\} = T_1 - T_2 + T_3. \end{align*}

By Corollary 2·2 we have:

We proceed to show that $T_2$ and $T_3$ are $O\Big( \varepsilon_X^2\pi(X) \Big)$ as $X \to \infty$ . We first examine $T_2$ . Set $\mathcal{I} = (\delta_1, \delta_2)$ . If the condition in (6·4) is false, then

\begin{equation*} \frac{\sqrt{X}}{\log{X}} H\Big(f_1,f_2, h, \frac{\log p}{2 \pi}\Big) \notin [\delta_1,\delta_2]. \end{equation*}

Applying (6·2), we deduce that

\begin{equation*} \frac{\sqrt{X}}{\log{X}} \frac{2k_h}{\pi} \cdot \frac{\log p \cdot (\lambda_{f_2}(p) - \lambda_{f_1}(p))}{p^{1 /2}} \notin \Big[\delta_1 + \frac{C\log{p}}{p},\delta_2 - \frac{C \log{p}}{p}\Big], \end{equation*}

where C is an implied constant in (6·2). Then (6·3) gives us

(6·5)

Since $p \in [(1-\varepsilon_X)X, X]$ , it follows that $(\lambda_{f_2}(p) - \lambda_{f_1} (p)) \in I_X$ , where $I_X$ is

\begin{align*} \frac{\pi}{2k_{h}} \Big(\delta_1, \frac{\delta_1 \log X}{\log{X(1-\varepsilon_X)}} + \frac{C}{\sqrt{X(1-\varepsilon_{X})}}\Big) \cup \frac{\pi}{2k_h} \Big( \delta_2 \sqrt{1-\varepsilon_X} - \frac{C}{\sqrt{X(1-\varepsilon_X)}}, \delta_2 \Big). \end{align*}

By Corollary 2·2, we have

\begin{align*} & \# \{ (1 - \varepsilon_X)X \le p \le X\;:\; (\lambda_{f_1}(p) - \lambda_{f_2}(p)) \in I_X \} \\ &= \nu(I_X) (\pi(X) - \pi((1 - \varepsilon_X)X)) + O\Big(\pi(X) \varepsilon_X^2 \Big). \end{align*}

From the prime number theorem, we obtain

\begin{equation*} \pi(X) - \pi((1 - \varepsilon_X)X) \sim \varepsilon_X \pi(X) . \end{equation*}

Combining this with the fact that $\nu(I_X) = O(\varepsilon_X)$ , we conclude the following:

\begin{equation*} \# \{ (1 - \varepsilon_X)X \le p \le X\;:\; (\lambda_{f_1}(p) - \lambda_{f_2}(p)) \in I_X \} = O( \varepsilon_X^2 \pi(X) ). \end{equation*}

Therefore, $T_2 = O( \varepsilon_X^2 \pi(X))$ . A very similar argument can be used to bound $T_3$ . More specifically, if (6·4) holds, then we have

\begin{equation*} \frac{\sqrt{X}}{\log{X}} \frac{2k_h}{\pi} \cdot \frac{\log p \cdot (\lambda_{f_2}(p) - \lambda_{f_1}(p))}{p^{1 /2}} \in ( \delta_1 - \frac{C\log{p}}{p},\delta_2 + \frac{C \log{p}}{p}), \end{equation*}

If (6·3) fails and (6·4) holds, then, much like (6·5), we obtain

\begin{equation*} \frac{2 k_h}{\pi} (\lambda_{f_2}(p) - \lambda_{f_1}(p)) \in \Big( \delta_1 \Big(\frac{p^{1/2} \log X}{X^{1/2} \log{p}}\Big) - \frac{C}{\sqrt{p}}, \delta_1 \Big) \cup \Big(\delta_2, \delta_2 \Big(\frac{p^{1/2} \log X}{X^{1/2} \log{p}}\Big) + \frac{C}{\sqrt{p}} \Big). \end{equation*}

By Corollary 2·2, the number of such $p \in ((1-\varepsilon_X)X, X)$ is $O\Big( \varepsilon_X^2\pi(X) \Big)$ .

6·4. Proof of Corollary 1·7

By Theorem 1·3, if $f_2$ wins the $(\alpha, h)$ -race, where $\alpha = {\log p}/{2\pi}$ , then we must have

\begin{equation*} 0 < \frac{\log(q_1 / q_2)}{ \pi} \int_\mathbb{T} h(t) dt < \int_\mathbb{T} h(t) ( g_{f_2, \alpha}(t) - g_{f_1, \alpha}(t)) dt.\end{equation*}

By Lemma 6·1, we have

\begin{equation*} \Big| \int_\mathbb{T} (g_{f_2, \alpha}(t) - g_{f_1,\alpha}(t)) h(t) dt \Big| \leq \int_\mathbb{T} h(t) dt \cdot \frac{2 \log{p}}{\pi} \Big( p^{ - \frac{1}{2}} + \frac{1}{(p^{ \frac{1}{2} } - 1) p^{\frac{1}{2}}} \Big).\end{equation*}

It follows that $\log(q_1/q_2) \le 2 p^{-1/2}( 1 + (p^{ \frac{1}{2} } - 1 )^{-1})\log{p}$ . The left hand side is independent of $\alpha$ and positive, while the right hand side tends to zero as p grows. Thus, this inequality holds for only finitely many primes p.

6·5. Proof of Corollary 1·8

Fix $t_0 \in [0,1)$ , and $k_1, k_2 \in \mathbb{Z}$ . By Theorem 1·3 and the same reasoning as in [ Reference Liu and ZaharescuLZ21 , theorem 1·2], that $f_1$ wins the local $(\alpha, t_0)$ -race against $f_2$ if

\begin{equation*} g_{f_1, \alpha}(t_0) + \frac{\log{q_1}}{2 \pi} > g_{f_2, \alpha} (t_0) + \frac{\log q_2}{2\pi},\end{equation*}

or, equivalently, if $({1}/{2\pi}) \log(q_1/q_2) > g_{f_2, \alpha}(t_0) - g_{f_1, \alpha}(t_0)$ .

We first assume $t_0 \neq {1}/{4}, {3}/{4}$ . For $\alpha = {\log p}/{2 \pi}$ and $q_2 \in (q_1, q_1 + \sqrt{q_1})$ , by Lemma 6·1, the following is sufficient to guarantee that $f_1$ wins the $(\alpha,t_0)$ race:

(6·6) \begin{equation} \frac{\sqrt{p}}{2 \log p} \log(1 + q_1^{-1/2}) < \cos(2 \pi t_0) (\lambda_{f_2}(p) - \lambda_{f_1}(p)) - \frac{4}{p^{1/2} (1 - p^{-1/2})}.\end{equation}

This inequality is automatically true if both

(6·7) \begin{equation} (\lambda_{f_1}(p) - \lambda_{f_2}(p)) \cos (2 \pi t_0) \ge \frac{|\cos(2 \pi t_0)|}{2}\end{equation}

and

(6·8) \begin{equation} \frac{|\cos(2 \pi t_0)|}{2} > \frac{p^{1/2}}{2 \log p} \log(1 + q_1^{-1/2})+ \frac{4}{p^{1/2} (1 - p^{-1/2})}\end{equation}

are satisfied.

Now set $X = q_1^{1/4} $ and $Y = q_1^{1/6} $ . For $p \in [Y,X)$ , if $q_1$ is sufficiently large, then (6·8) is satisfied. Choose $I_1, I_2 \subseteq [\!-\!2, 2]$ such that $(\lambda_{f_1}(p) ,\lambda_{f_2}(p)) \in I_1 \times I_2$ implies (6·7). Suppose $f_1 \in S_{k_1}^{new}(\Gamma_0(q_1)), f_2 \in S_{k_2}^{new} (\Gamma_0(q_2))$ are non-CM newforms, where $q_2 \in [q_1, q_1 + \sqrt{q_1}]$ , and assume, as in the statement of the Corollary, that $f_2 \neq f_1 \otimes \chi$ for any primitive Dirichlet character $\chi$ . Let

\begin{equation*}\pi_{f_1, f_2, I_1, I_2}(X) \;:\!=\; \# \{ p \le X\;:\; (\lambda_{f_1}(p) , \lambda_{f_2} (p)) \in I_1 \times I_2 \}.\end{equation*}

Then by Theorem 2·1 we have

\begin{multline*} \pi_{f_1, f_2, I_1, I_2}(X) - \pi_{f_1, f_2, I_1, I_2}(Y) \ge \mu_{\textrm{ST}}(I_1) \mu_{\textrm{ST}}(I_2) ( \pi(X) - \pi(Y)) \\ - c \pi(X) \frac{\log \log \log (k_1 k_2 q_1^{\frac{1}{4} +\frac{1}{2} + 1})}{(\!\log \log q_1^{1/4})^{1/2}} - c \pi(Y) \frac{\log \log \log (k_1 k_2 q_1^{\frac{1}{6} +\frac{1}{2} + 1})}{(\!\log \log q_1^{1/6})^{1/2}}.\end{multline*}

So if $q_1$ is sufficiently large, then $\pi_{f_1, f_2, I_1, I_2}(X) > \pi_{f_1, f_2, I_1, I_2}(Y)$ . So there exists p between Y and X such that (6·6) is satisfied and therefore $f_1$ wins the local $(t_0, {\log p}/{2\pi})$ race.

Finally, if $t_0 = {1}/{4}, {3}/{4}$ , then instead of (6·6), we wish to find p such that

\begin{align*} \frac{p}{2 \log p} \log(1 + q_1^{-1/2}) < (\lambda_{f_1}(p)^2 - \lambda_{f_2}(p)^2) - \frac{4}{p^{3/2} (1 - p^{-1/2})}.\end{align*}

We obtain this the same way as the first case.

7. Example

We conclude with a numerical example to illustrate (1·15). For our example, we consider the L-function $L(s,\Delta)$ associated to the discriminant modular form

\begin{equation*}\Delta(z) = e^{2\pi i z}\prod_{n=1}^{\infty}(1-e^{2\pi i n z})^{24} = \sum_{n=1}^{\infty}\tau(n)e^{2\pi inz}\in S_{12}^{\textrm{new}}(\Gamma_0(1)),\end{equation*}

where $\tau(n)$ denotes the Ramanujan tau function. We use Rubinstein’s lcalc package [ Reference RubinsteinRub14 ] to calculate the $2\cdot 10^5$ nontrivial zeros $L(s, \Delta)$ up to height $T = 74920.77$ .

Let M and $\boldsymbol{\alpha}$ satisfy the following relation for (1·13),

\begin{equation*} M \boldsymbol{\alpha}^{\intercal} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \frac{1}{2\pi}\begin{pmatrix} \log 2 \\ \log 3 \end{pmatrix},\end{equation*}

so that (1·14) will define our density function $g_{\Delta, \boldsymbol{\alpha}}(x,y)$ . We graph $g_{\Delta, \boldsymbol{\alpha}}(x,y)$ in Figure 1(a) below. Next, we partition the unit square $[0, 1) \times [0, 1)$ as

\begin{equation*} [0,1)\times[0,1) = \bigcup_{a=0}^{29}\bigcup_{b=0}^{29}S_{a,b}, \qquad S_{a,b}\;:\!=\;\Big[\frac{a}{30},\frac{a+1}{30}\Big)\times\Big[\frac{b}{30},\frac{b+1}{30}\Big).\end{equation*}

Given $(x,y)\in[0,1)\times[0,1)$ , there exists a unique pair of integers a and b with $0\leq a,b\leq 29$ such that $(x,y)\in S_{a,b}$ . Denoting this unique square as S(x,y), we define

\begin{equation*} \tilde{g}_{\Delta, \boldsymbol{\alpha}}(x, y) \;:\!=\; \#\{\rho = \beta + i \gamma\;:\; L(\rho, \Delta) = 0 { and } (\{\alpha_1 \gamma\}, \{\alpha_2 \gamma\}) \in S(x,y) \}.\end{equation*}

This gives us a discretised approximation to $g_{\Delta,\boldsymbol{\alpha}}(x,y)$ , which we plot in Figure 1(b) below.

Fig. 1. Example.

Footnotes

1 On RH, absolute continuity suffices.

2 The set of vectors $\boldsymbol{\alpha}$ for which there exists $C_{\boldsymbol{\alpha}}>0$ such that (1·12) holds have full Lebesgue measure in $\mathbb{R}^n$ by work of Kemble [ Reference KembleKem05 ] and Khintchine [ Reference KhintchineKhi24 ].

3 The $\doteq$ suppresses the more complicated Euler factors at primes $p|q_{\pi}$ . Their explicit description does not arise in our proofs.

References

Andersen, N. and Thorner, J.. Zeros of $\textrm{GL}_2$ L-functions on the critical line. Forum Math. 33 (2021), no. 2, 477491.Google Scholar
Alan, S. Baluyot, C.. On the Zeros of Riemann’s Zeta-function. (ProQuest LLC, Ann Arbor, MI, 2017). PhD. thesis. University of Rochester.Google Scholar
Blomer, V. and Brumley, F.. On the Ramanujan conjecture over number fields. Ann. of Math. (2) 174 (2011), no. 1, 581605.Google Scholar
Bernard, D.. Modular case of Levinson’s theorem. Acta Arith. 167 (2015), no. 3, 201237.Google Scholar
Bombieri, E. and Hejhal, D. A.. On the distribution of zeros of linear combinations of Euler products. Duke Math. J. 80 (1995), no. 3, 821862.Google Scholar
Barnet-Lamb, T., Geraghty, D., Harris, M. and Taylor, R.. A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 2998.Google Scholar
Das, M.. Selberg’s Central Limit Theorem for L-functions of level aspect. (2020), arXiv:2012.10766.Google Scholar
Ford, K., Harper, A. J. and Lamzouri, Y.. Extreme biases in prime number races with many contestants. Math. Ann. 374 (2019), no. 1-2, 517551.Google Scholar
Ford, K. and Konyagin, S.. The prime number race and zeros of L-functions off the critical line. Duke Math. J. 113 (2002), no. 2, 313330.Google Scholar
Ford, K., Lamzouri, Y. and Konyagin, S.. The prime number race and zeros of Dirichlet L-functions off the critical line: Part III. Q. J. Math. 64 (2013), no. 4, 10911098.Google Scholar
Fiorilli, D. and Martin, G.. Inequities in the Shanks–Rényi prime number race: an asymptotic formula for the densities. J. Reine Angew. Math. 676 (2013), 121212.Google Scholar
Ford, K., Meng, X. and Zaharescu, A.. Simultaneous distribution of the fractional parts of Riemann zeta zeros. Bull. Lond. Math. Soc. 49 (2017), no. 1, 19.Google Scholar
Ford, K., Soundararajan, K. and Zaharescu, A.. On the distribution of imaginary parts of zeros of the Riemann zeta function. II. Math. Ann. 343 (2009), no. 3, 487505.Google Scholar
Ford, K. and Zaharescu, A.. On the distribution of imaginary parts of zeros of the Riemann zeta function. J. Reine Angew. Math. 579 (2005), 145158.Google Scholar
Ford, K. and Zaharescu, A.. Unnormalized differences between zeros of L-functions. Compositio. Math. 151 (2015), no. 2, 230252.Google Scholar
Harris, M., Potential automorphy of odd-dimensional symmetric powers of elliptic curves and applications, Algebra, arithmetic and geometry: in honor of Yu. I. Manin. Vol. II. Progr. Math., vol. 270 (Birkhäuser Boston, Boston, MA, 2009), pp. 121.Google Scholar
Hlawka, E.. Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunktion zusammenhängen. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 184 (1975), no. 8-10, 459471.Google Scholar
Iwaniec, H. and Kowalski, E.. Analytic Number Theory . (American Mathematical Society Colloquium Publications, American Mathematical Society, 2004).Google Scholar
Jiang, Y., , G. and Wang, Z.. Exponential sums with multiplicative coefficients without the Ramanujan conjecture. Math. Ann. 379 (2021), no. 1-2, 589632.Google Scholar
Jutila, M.. Zeros of the Zeta-function Near the Critical Line. Stud. Pure Math., (Birkhäuser, Basel, 1983), pp. 385394.CrossRefGoogle Scholar
Kemble, R. S.. A Groshev theorem for small linear forms. Mathematika 52 (2005), no. 1-2, 7985 (2006).Google Scholar
Khintchine, A.. Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92 (1924), no. 1-2, 115125.Google Scholar
Kim, H. H.. Functoriality for the exterior square of $\textrm{GL}_4$ and the symmetric fourth of $\textrm{GL}_2$ . J. Amer. Math. Soc. 16 (2003), no. 1, 139183, With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.Google Scholar
Luo, W. Z.. Zeros of Hecke L-functions associated with cusp forms. Acta Arith. 71 (1995), no. 2, 139158.Google Scholar
Liu, D. and Zaharescu, A.. Races with imaginary parts of zeros of the Riemann zeta function and Dirichlet L-functions. J. Math. Anal. Appl. 494 (2021), no. 1, 124591.Google Scholar
Montgomery, H. L. and Vaughan, R. C.. Hilbert’s inequality. J. London Math. Soc. (2) 8 (1974), 7382.CrossRefGoogle Scholar
Ono, K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102. Published for the Conference Board of the Mathematical Sciences, Washington, DC (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
Rubinstein, M. and Sarnak, P.. Chebyshev’s bias. Experiment. Math. 3 (1994), no. 3, 173197.Google Scholar
Radziwiłł, M. and Soundararajan, K.. Selberg’s central limit theorem for $\log{|\zeta(1/2+it)|}$ . Enseign. Math. 63 (2017), no. 1-2, 119.Google Scholar
Rubinstein, M.. L-function c++ class library and the command line program lcalc. https://github.com/agrawroh/l-calc (2014).Google Scholar
Selberg, A., Old and new conjectures and results about a class of Dirichlet series. Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), University of Salerno (1992), pp. 367385.Google Scholar
Thorner, J., Effective forms of the Sato-Tate conjecture, Res. Math. Sci. 8 (2021), no. 1, 4.Google Scholar
Titchmarsh, E. C., The Theory of Functions (Oxford University Press, Oxford, 1958). Reprint of the second (1939) edition.Google Scholar
Titchmarsh, E. C., The Theory of the Riemann Zeta-function, second ed. (The Clarendon Press, Oxford University Press, New York, 1986). Edited and with a preface by D. R. Heath–Brown.Google Scholar
Wong, P.-J., On the Chebotarev–Sato–Tate phenomenon , J. Number Theory 196 (2019), 272290.CrossRefGoogle Scholar
Figure 0

Fig. 1. Example.