Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T17:12:48.685Z Has data issue: false hasContentIssue false

Zariski dense orbits for regular self-maps of split semiabelian varieties in positive characteristic

Published online by Cambridge University Press:  02 May 2023

DRAGOS GHIOCA
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. e-mail: [email protected]
SINA SALEH
Affiliation:
Department of Mathematics, Harvard University, Cambridge, MA 02138, U.S.A. e-mail: [email protected]

Abstract

We prove the Zariski dense orbit conjecture in positive characteristic for regular self-maps of split semiabelian varieties.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amerik, E. Campana, F.. Fibrations méromorphes sur certaines variétés à fibré canonique trivial. Pure Appl. Math. Q. 4(2) (2008). Special issue: in honor of Fedor Bogomolov. Part 1, 509545.Google Scholar
Bell, J. P., Ghioca, D., Reichstein, Z. and Satriano, M.. On the Medvedev-Scanlon conjecture for minimal threefolds of non-negative Kodaira dimension. New York J. Math. 23 (2017), 11851203.Google Scholar
Bell, J. P., Ghioca, D. and Reichstein, Z.. On a dynamical version of a theorem of Rosenlicht. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 17(1) (2017), 187204.Google Scholar
Cohn, P. M.. Skew Fields: Theory of General Division Rings (Cambridge University Press, 1995), pp. xvi+494.CrossRefGoogle Scholar
Corvaja, P., Ghioca, D., Scanlon, T. and Zannier, U.. The Dynamical Mordell–Lang Conjecture for endomorphisms of semiabelian varieties defined over fields of positive characteristic. J. Inst. Math. Jussieu 20(2) (2021), 669698.CrossRefGoogle Scholar
Faltings, G.. The general case of S. Lang’s conjecture. Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991). Perspect. Math., vol. 15 (Academic Press, San Diego, CA, 1994), pp. 175182.Google Scholar
Ghioca, D.. The isotrivial case in the Mordell–Lang Theorem. Trans. Amer. Math. Soc. 360(7) (2008), 38393856.CrossRefGoogle Scholar
Ghioca, D. Hu., F. Density of orbits of endomorphisms of commutative linear algebraic groups. New York J. Math. 24 (2018), 375388.Google Scholar
Ghioca, D., Ostafe, A., Saleh, S. and Shparlinski, I. E.. A sparsity result for the Dynamical Mordell–Lang Conjecture in positive characteristic. Bull. Aust. Math. Soc. 104(3) (2021), 381390.CrossRefGoogle Scholar
Ghioca, D., Ostafe, A., Saleh, S. and Shparlinski, I. E.. On sparsity of representations of polynomials as linear combinations of exponential functions. J. London. Math. Soc. (2) 105(4) (2022), 20762103.CrossRefGoogle Scholar
Ghioca, D. Saleh, S.. Zariski dense orbits for regular self-maps on split semiabelian varieties. Canad. Math. Bull. 65(1) (2022), 116122.CrossRefGoogle Scholar
Ghioca, D. Saleh, S.. Zariski dense orbits for regular self-maps of tori in positive characteristic. New York J. Math. 27 (2021), 12741304.Google Scholar
Ghioca, D. Satriano, M.. Density of orbits of dominant regular self-maps of semiabelian varieties. Trans. Amer. Math. Soc. 371(9) (2019), 63416358.CrossRefGoogle Scholar
Ghioca, D. Scanlon, T.. Density of orbits of endomorphisms of abelian varieties. Trans. Amer. Math. Soc. 369(1) (2017), 447466.CrossRefGoogle Scholar
Ghioca, D. Xie, J.. Algebraic dynamics of skew-linear self-maps. Proc. Amer. Math. Soc. 146(10) (2018), 43694387.CrossRefGoogle Scholar
Iitaka, S.. Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 525544.Google Scholar
Laurent, M.. Équations diophantiennes exponentielles. Invent. Math. 78(2) (1984), 299327.CrossRefGoogle Scholar
Medvedev, A. Scanlon, T.. Invariant varieties for polynomial dynamical systems. Ann. of Math. (2) 179(1) (2014), 81177.CrossRefGoogle Scholar
Milne, J.. Abelian varieties. lecture notes available online.Google Scholar
Moosa, R. Scanlon, T.. The Mordell–Lang Conjecture in positive characteristic revisited. Model Theory and Applications (eds. L. B’elair, P. D’Aquino, D. Marker, M. Otero, F. Point and A. Wilkie) (2003), pp. 273296.Google Scholar
Moosa, R. Scanlon, T.. F-structures and integral points on semiabelian varieties over finite fields. Amer. J. Math. (2) 126(3) (2004), 473522.CrossRefGoogle Scholar
Vojta, P.. Integral points on subvarieties of semiabelian varieties, I. Invent. Math. 126(1) (1996), 133181.CrossRefGoogle Scholar
Xie, J.. Remarks on algebraic dynamics in positive characteristic. J. Reine Angew. Math. 797 (2023), 117–153.Google Scholar
Zhang, S.. Distributions in algebraic dynamics. Surv. Diff. Geom. vol. X (Int. Press, Somerville, MA, 2006), 381430.Google Scholar