We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Amerik, E.Campana, F.. Fibrations méromorphes sur certaines variétés à fibré canonique trivial. Pure Appl. Math. Q.4(2) (2008). Special issue: in honor of Fedor Bogomolov. Part 1, 509–545.Google Scholar
[2]
Bell, J. P., Ghioca, D., Reichstein, Z. and Satriano, M.. On the Medvedev-Scanlon conjecture for minimal threefolds of non-negative Kodaira dimension. New York J. Math.23 (2017), 1185–1203.Google Scholar
[3]
Bell, J. P., Ghioca, D. and Reichstein, Z.. On a dynamical version of a theorem of Rosenlicht. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 17(1) (2017), 187–204.Google Scholar
[4]
Cohn, P. M.. Skew Fields: Theory of General Division Rings (Cambridge University Press, 1995), pp. xvi+494.CrossRefGoogle Scholar
[5]
Corvaja, P., Ghioca, D., Scanlon, T. and Zannier, U.. The Dynamical Mordell–Lang Conjecture for endomorphisms of semiabelian varieties defined over fields of positive characteristic. J. Inst. Math. Jussieu20(2) (2021), 669–698.CrossRefGoogle Scholar
[6]
Faltings, G.. The general case of S. Lang’s conjecture. Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991). Perspect. Math., vol. 15 (Academic Press, San Diego, CA, 1994), pp. 175–182.Google Scholar
[7]
Ghioca, D.. The isotrivial case in the Mordell–Lang Theorem. Trans. Amer. Math. Soc.360(7) (2008), 3839–3856.CrossRefGoogle Scholar
[8]
Ghioca, D.Hu., F.Density of orbits of endomorphisms of commutative linear algebraic groups. New York J. Math.24 (2018), 375–388.Google Scholar
[9]
Ghioca, D., Ostafe, A., Saleh, S. and Shparlinski, I. E.. A sparsity result for the Dynamical Mordell–Lang Conjecture in positive characteristic. Bull. Aust. Math. Soc.104(3) (2021), 381–390.CrossRefGoogle Scholar
[10]
Ghioca, D., Ostafe, A., Saleh, S. and Shparlinski, I. E.. On sparsity of representations of polynomials as linear combinations of exponential functions. J. London. Math. Soc. (2) 105(4) (2022), 2076–2103.CrossRefGoogle Scholar
[11]
Ghioca, D.Saleh, S.. Zariski dense orbits for regular self-maps on split semiabelian varieties. Canad. Math. Bull.65(1) (2022), 116–122.CrossRefGoogle Scholar
[12]
Ghioca, D.Saleh, S.. Zariski dense orbits for regular self-maps of tori in positive characteristic. New York J. Math.27 (2021), 1274–1304.Google Scholar
[13]
Ghioca, D.Satriano, M.. Density of orbits of dominant regular self-maps of semiabelian varieties. Trans. Amer. Math. Soc.371(9) (2019), 6341–6358.CrossRefGoogle Scholar
[14]
Ghioca, D.Scanlon, T.. Density of orbits of endomorphisms of abelian varieties. Trans. Amer. Math. Soc.369(1) (2017), 447–466.CrossRefGoogle Scholar
[15]
Ghioca, D.Xie, J.. Algebraic dynamics of skew-linear self-maps. Proc. Amer. Math. Soc.146(10) (2018), 4369–4387.CrossRefGoogle Scholar
[16]
Iitaka, S.. Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math.23 (1976), 525–544.Google Scholar
[17]
Laurent, M.. Équations diophantiennes exponentielles. Invent. Math.78(2) (1984), 299–327.CrossRefGoogle Scholar
[18]
Medvedev, A.Scanlon, T.. Invariant varieties for polynomial dynamical systems. Ann. of Math. (2) 179(1) (2014), 81–177.CrossRefGoogle Scholar
[19]
Milne, J.. Abelian varieties. lecture notes available online.Google Scholar
[20]
Moosa, R.Scanlon, T.. The Mordell–Lang Conjecture in positive characteristic revisited. Model Theory and Applications (eds. L. B’elair, P. D’Aquino, D. Marker, M. Otero, F. Point and A. Wilkie) (2003), pp. 273–296.Google Scholar
[21]
Moosa, R.Scanlon, T.. F-structures and integral points on semiabelian varieties over finite fields. Amer. J. Math. (2) 126(3) (2004), 473–522.CrossRefGoogle Scholar
[22]
Vojta, P.. Integral points on subvarieties of semiabelian varieties, I. Invent. Math.126(1) (1996), 133–181.CrossRefGoogle Scholar
[23]
Xie, J.. Remarks on algebraic dynamics in positive characteristic. J. Reine Angew. Math. 797 (2023), 117–153.Google Scholar
[24]
Zhang, S.. Distributions in algebraic dynamics. Surv. Diff. Geom. vol. X (Int. Press, Somerville, MA, 2006), 381–430.Google Scholar