Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T13:43:42.107Z Has data issue: false hasContentIssue false

Uniform summability of power series

Published online by Cambridge University Press:  24 October 2008

J. C. Kurtz
Affiliation:
Michigan State University
W. T. Sledd
Affiliation:
Michigan State University

Abstract

It is shown that for the Cesàro means (C, α) with α > - 1, and for a certain class of more general Nörlund means, summability of the series σan implies uniform summability of the series σan zn in a Stolz angle at z = 1.

If B is a normal matrix and (B) denotes the series summability field with the usual Banach space topology, then the vectors {ek} (ek = {0,0,..., 1,0,...}) are said to form a Toplitz basis for (B) relative to a method H if H — Σakek = a for each a = {ak}ε(B). It is shown for example that the above relation holds for B = (C,α), α> − 1 , and H = Abel method; also for B = (C,α) and H = (C,β) with 0 ≤ α ≤ β.

Applications are made to theorems on summability factors.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Andersen, A. F.Summation af ikke hel Orden. Mat. Tidsskrift (1946), 3352.Google Scholar
(2)Bosanquet, L. S. and Tatchell, J. B.A note on summability factors. Mathematika 4 (1957), 2540.CrossRefGoogle Scholar
(3)Hardy, G. H.Divergent series (Clarendon Press; London, 1949).Google Scholar
(4)Hardy, G. H. and Riesz, M.The general theory of Dirichlet series (Cambridge University Press, 1915).Google Scholar
(5)Lorentz, G. G. and Zeller, K.Abschnittslimitierbarkeit und der Satz von Hardy—Bohr. Arch. Math. (Basel) 15 (1964), 208213.CrossRefGoogle Scholar
(6)Meyer-König, and Zeller, K.Lückenumkehrsätze und Lückenperfektheit. Math. Z. 66 (1956), 203224.CrossRefGoogle Scholar
(7)Peyerimhoff, A.Lectures on summability (Springer-Verlag; Berlin, 1969).CrossRefGoogle Scholar
(8)Titchmarsh, E. C.The theory of functions (Oxford University Press, 1939).Google Scholar
(9)Zeller, K.Allgemeine Eigenschaften von Limitierungsverfahren. Math. Z. 53 (1951), 463487.CrossRefGoogle Scholar
(10)Zeller, K.Approximation in Wirkfeldern von Summierungsverfahren. Arch. Math. (Basel) 4 (1953), 425431.CrossRefGoogle Scholar
(11)Zeller, K.Theorie der Limitierungsverfahren (Springer-Verlag; Berlin, 1958).CrossRefGoogle Scholar
(12)Zeller, K.Sur la méthode de sommation d'Abel. C. B. Acad. Sci. Paris Sér. A-B 236 (1953), 568569.Google Scholar