Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T23:24:05.308Z Has data issue: false hasContentIssue false

Two theorems on Engel groups

Published online by Cambridge University Press:  24 October 2008

K. W. Gruenberg
Affiliation:
Trinity CollegeCambridge

Extract

Let G be a group and let us write [x, y] = x−1y−1xy. We shall say that G is an Engel group, or that it satisfies the Engel condition, if to any pair of elements x, y in G there can be assigned an integer k (which is allowed to depend on x, y) such that

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Burnside, W.On groups in which every two conjugate operations are permutable. Proc. Lond. math. Soc. 35 (1902), 2837.CrossRefGoogle Scholar
(2)Hall, Marshall Jr. A basis for free Lie rings and higher commutators in free groups. Proc. Amer. math. Soc. 1 (1950), 575–81.CrossRefGoogle Scholar
(3)Hall, P.A contribution to the theory of groups of prime power order. Proc. Lond. math. Soc. (2), 36 (1934), 2995.CrossRefGoogle Scholar
(4)Hall, P. Basic commutators and nilpotent groups. (To appear.)Google Scholar
(5)Levi, F. W.Groups in which the commutator operation satisfies certain algebraic conditions. J. Indian math. Soc. (N.S.), 6 (1942), 8797.Google Scholar
(6)Meier-Wunderli, H.Über die Gruppen mit der identischen Relation [x 1, …, xi] = [x 2, …, xn, x 1. Vjschr. naturf. Ges. Zürich, 94 (1949), 211–18.Google Scholar
(7)Zassenhaus, H.Über Lie'sche Ringe mit Primzahlcharakteristik. Abh. math. Sem. hamburg. Univ. 13 (1940), 1100.CrossRefGoogle Scholar
(8)Zorn, M.Bull. Amer. math. Soc. 42 (1936), 485.Google Scholar
(9)Zorn, M.On a theorem of Engel. Bull. Amer. math. Soc. 43 (1937), 401–4.CrossRefGoogle Scholar