Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:28:43.206Z Has data issue: false hasContentIssue false

Transversality of smooth definable maps in O-minimal structures

Published online by Cambridge University Press:  10 January 2019

NHAN NGUYEN
Affiliation:
ICMC-University of Sao Paulo
SAURABH TRIVEDI*
Affiliation:
ICMC-University of Sao Paulo

Abstract

We present a definable smooth version of the Thom transversality theorem. We show further that the set of non-transverse definable smooth maps is nowhere dense in the definable smooth topology. Finally, we prove a definable version of a theorem of Trotman which says that the Whitney (a)-regularity of a stratification is necessary and sufficient for the stability of transversality.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Coste, M.. An Introduction to O-minimal Geometry (Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000).Google Scholar
[2]Escribano, J.. Approximation theorems in o-minimal structures. Illinois J. Math. 46(1) (2002), 111128.CrossRefGoogle Scholar
[3]Feldman, E. A.. The geometry of immersions. I. Trans. Amer. Math. Soc. 120 (1965), 185224.CrossRefGoogle Scholar
[4]Fischer, A.. Smooth functions in o-minimal structures. Adv. Math. 218 (2008), no. 2, 496514.CrossRefGoogle Scholar
[5]Golubitsky, M. and Guillemin, V.. Stable Mappings and their Singularities. Graduate Texts in Math., vol. 14. (Springer-Verlag, New York-Heidelberg, 1973).CrossRefGoogle Scholar
[6]Le Gal, O. and Rolin, J–P.. An o-minimal structure which does not admit C cellular decomposition. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 543562.CrossRefGoogle Scholar
[7]Loi, T. L.. Whitney stratification of sets definable in the structure Rexp. In Singularities and Differential Equations (Warsaw, 1993). Banach Center Publications, vol. 33. (Polish Acad. Sci. Inst. Math., Warsaw, 1996), 401409.CrossRefGoogle Scholar
[8]Loi, T. L.. Verdier and strict Thom stratifications in o-minimal structures. Illinois J. Math. 42 (1998), no. 2, 347356.CrossRefGoogle Scholar
[9]Loi, T. L.. Transversality theorem in o-minimal structures. Compos. Math. 144 (2008), no. 5, 12271234.CrossRefGoogle Scholar
[10]Mather, J. N.. Generic Projections. Ann. Math. 98 (1973), no. 2, 226245.CrossRefGoogle Scholar
[11]Miller, C.. Infinite differentiability in polynomially bounded o-minimal structures. Proc. Amer. Math. Soc. 123 (1995), no. 8, 25512555.CrossRefGoogle Scholar
[12]Nguyen, N.. Structure métrique et géométrie des ensembles definissables dans des structures o-minimales PhD thesis. Aix-Marseille University, (2015).Google Scholar
[13]Nguyen, N., Trivedi, S. and Trotman, D.. A geometric proof of the existence of definable Whitney stratifications. Illinois J. Math. 58 (2014), no. 2, 381389.CrossRefGoogle Scholar
[14]Shiota, M.. Nash manifolds Lecture Notes in Math., vol. 1269 (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
[15]Shiota, M.. Geometry of subanalytic and semialgebraic sets, vol. 150 Prog. Math. (Birkhäuser Boston, Inc., Boston, MA, 1997).CrossRefGoogle Scholar
[16]Trivedi, S.. On Whitney (a) and Thom regular real and complex analytic stratifications. Thesis. Aix Marseille University (2013).Google Scholar
[17]Trivedi, S., and Trotman, D.. Detecting Thom faults in stratified mappings. Kodai Math. J. 37 (2014), no. 2, 341354.CrossRefGoogle Scholar
[18]Trotman, D. J. A.. Whitney stratifications: faults and detectors. Thesis University of Warwick (1977).Google Scholar
[19]Trotman, D. J. A..Stability of transversality to a stratification implies Whitney (a)-regularity. Invent. Math. 50 (1978/79), no. 3, 273277.CrossRefGoogle Scholar
[20]van den Dries, L.. Tame topology and o-minimal structures, vol. 248 London Math. Soc. Lecture Note Series. (Cambridge University Press, Cambridge 1998).CrossRefGoogle Scholar
[21]Wilkie, A. J..On defining C . J. Symb. Logic 59 (1994), no. 1, 344.CrossRefGoogle Scholar