No CrossRef data available.
Article contents
Transversality of smooth definable maps in O-minimal structures
Published online by Cambridge University Press: 10 January 2019
Abstract
We present a definable smooth version of the Thom transversality theorem. We show further that the set of non-transverse definable smooth maps is nowhere dense in the definable smooth topology. Finally, we prove a definable version of a theorem of Trotman which says that the Whitney (a)-regularity of a stratification is necessary and sufficient for the stability of transversality.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 168 , Issue 3 , May 2020 , pp. 519 - 533
- Copyright
- Copyright © Cambridge Philosophical Society 2019
References
REFERENCES
[1]Coste, M.. An Introduction to O-minimal Geometry (Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000).Google Scholar
[2]Escribano, J.. Approximation theorems in o-minimal structures. Illinois J. Math. 46(1) (2002), 111–128.CrossRefGoogle Scholar
[3]Feldman, E. A.. The geometry of immersions. I. Trans. Amer. Math. Soc. 120 (1965), 185–224.CrossRefGoogle Scholar
[4]Fischer, A.. Smooth functions in o-minimal structures. Adv. Math. 218 (2008), no. 2, 496–514.CrossRefGoogle Scholar
[5]Golubitsky, M. and Guillemin, V.. Stable Mappings and their Singularities. Graduate Texts in Math., vol. 14. (Springer-Verlag, New York-Heidelberg, 1973).CrossRefGoogle Scholar
[6]Le Gal, O. and Rolin, J–P.. An o-minimal structure which does not admit C ∞cellular decomposition. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 543–562.CrossRefGoogle Scholar
[7]Loi, T. L.. Whitney stratification of sets definable in the structure Rexp. In Singularities and Differential Equations (Warsaw, 1993). Banach Center Publications, vol. 33. (Polish Acad. Sci. Inst. Math., Warsaw, 1996), 401–409.CrossRefGoogle Scholar
[8]Loi, T. L.. Verdier and strict Thom stratifications in o-minimal structures. Illinois J. Math. 42 (1998), no. 2, 347–356.CrossRefGoogle Scholar
[9]Loi, T. L.. Transversality theorem in o-minimal structures. Compos. Math. 144 (2008), no. 5, 1227–1234.CrossRefGoogle Scholar
[11]Miller, C.. Infinite differentiability in polynomially bounded o-minimal structures. Proc. Amer. Math. Soc. 123 (1995), no. 8, 2551–2555.CrossRefGoogle Scholar
[12]Nguyen, N.. Structure métrique et géométrie des ensembles definissables dans des structures o-minimales PhD thesis. Aix-Marseille University, (2015).Google Scholar
[13]Nguyen, N., Trivedi, S. and Trotman, D.. A geometric proof of the existence of definable Whitney stratifications. Illinois J. Math. 58 (2014), no. 2, 381–389.CrossRefGoogle Scholar
[14]Shiota, M.. Nash manifolds Lecture Notes in Math., vol. 1269 (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
[15]Shiota, M.. Geometry of subanalytic and semialgebraic sets, vol. 150 Prog. Math. (Birkhäuser Boston, Inc., Boston, MA, 1997).CrossRefGoogle Scholar
[16]Trivedi, S.. On Whitney (a) and Thom regular real and complex analytic stratifications. Thesis. Aix Marseille University (2013).Google Scholar
[17]Trivedi, S., and Trotman, D.. Detecting Thom faults in stratified mappings. Kodai Math. J. 37 (2014), no. 2, 341–354.CrossRefGoogle Scholar
[18]Trotman, D. J. A.. Whitney stratifications: faults and detectors. Thesis University of Warwick (1977).Google Scholar
[19]Trotman, D. J. A..Stability of transversality to a stratification implies Whitney (a)-regularity. Invent. Math. 50 (1978/79), no. 3, 273–277.CrossRefGoogle Scholar
[20]van den Dries, L.. Tame topology and o-minimal structures, vol. 248 London Math. Soc. Lecture Note Series. (Cambridge University Press, Cambridge 1998).CrossRefGoogle Scholar