Article contents
Traced monoidal categories
Published online by Cambridge University Press: 24 October 2008
Abstract
Traced monoidal categories are introduced, a structure theorem is proved for them, and an example is provided where the structure theorem has application.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 119 , Issue 3 , April 1996 , pp. 447 - 468
- Copyright
- Copyright © Cambridge Philosophical Society 1996
References
REFERENCES
[BÉ]Bloom, S. L. and Ésik, Z.. Iteration theories. EATCS Monographs on Theoretical Computer Science (Springer-Verlag, 1993).Google Scholar
[CJSV]Carboni, A., Johnson, S., Street, R. and Verity, D.. Modulated bicategories. J. Pure Appl. Algebra 94 (1994), 229–282.CrossRefGoogle Scholar
[FY1]Freyd, P. and Yetter, D.. Braided compact closed categories with applications to low dimensional topology. Advances in Math. 77 (1989). 156–182.CrossRefGoogle Scholar
[FY2]Freyd, P. and Yetter, D.. Coherence theorems via knot theory. J. Pure Appl. Algebra 78 (1992), 49–76.CrossRefGoogle Scholar
[G]Girard, J.-Y.. Geometry of interaction I, interpretation of system F. Stud. Logic, Found. Math. 127 (1989), 221–260.CrossRefGoogle Scholar
[JS1]Joyal, A. and Street, R.. Braided tensor categories. Advances in Math. 102 (1993), 20–78.CrossRefGoogle Scholar
[JS2]Joyal, A. and Street, R.. The geometry of tensor calculus I. Advances in Math. 88 (1991), 55–113.CrossRefGoogle Scholar
[JS3]Joyal, A. and Street, R.. Tortile Yang-Baxter operators in tensor categories. J. Pure Appl. Algebra 71 (1991), 43–51.CrossRefGoogle Scholar
[JS4]Joyal, A. and Street, R.. An introduction to Tannaka duality and quantum groups; in Category Theory. Proceedings, Como 1990; Part II of Lecture Notes in Math. 1488 (Springer-Verlag, 1991), 411–492.Google Scholar
[K.L]Kelly, G. M. and Laplaza, M. L.. Coherence for compact closed categories. J. Pure Appl. Algebra 19 (1980), 193–213.CrossRefGoogle Scholar
[RT]Reshetikhin, N. Yu. and Turaev, V. G.. Ribbon graphs and their invariants derived from quantum groups. Comm. Math. Phys. 127 (1) (1990), 1–26.CrossRefGoogle Scholar
[SR]Rivano, N. Saavedra. Catégories Tannakiennes. Lecture Notes in Math. 265 (Springer-Verlag, 1972).Google Scholar
[Sm]Chee, Shum Mei. Tortile tensor categories (PhD thesis, Macquarie University, November 1989). J. Pure Appl. Algebra 93 (1994), 57–110.CrossRefGoogle Scholar
- 255
- Cited by