No CrossRef data available.
Towards a higher-dimensional MacLane class
Published online by Cambridge University Press: 24 October 2008
Extract
Let D be a bounded region in ℝm, m ≥ 2. We say that a function u defined in D has asymptotic value α if there is a boundary path Γ:x(t), 0≤t<1, in D (that is, dist (x(t), ∂D)→0 as t→1), such that u(x(t))→α as t→1. If in addition, x(t)→ξ as t→1, then u has asymptotic value α at ξ.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 119 , Issue 4 , May 1996 , pp. 665 - 671
- Copyright
- Copyright © Cambridge Philosophical Society 1996
References
REFERENCES
[1]Domar, Y.. On the existence of a largest subharmonic minorant of a given function. Ark. Mat. 3 (1954/1958), 429–440.CrossRefGoogle Scholar
[2]Fernández, J. L., Heinonen, J. and Llorente, J. G.. Asymptotic values of subharmonic functions (preprint).Google Scholar
[4]Hornblower, R. J. M.. A growth condition for the MacLane class A. Proc. London Math. Soc. (3) 23 (1971), 371–384.CrossRefGoogle Scholar
[5]Hornblower, R. J. M.. Subharmonic analogues of MacLane's classes. Ann. Pol. Mat. 26 (1972), 135–146.CrossRefGoogle Scholar
[6]MacLane, G. R.. Asymptotic values of holomorphic functions. Rice University Studies 49 (1963), No. 1.Google Scholar
[7]MacLane, G. R.. A growth condition for the class A. Michigan Math. J. 25 (1978), 263–287.CrossRefGoogle Scholar
[8]Rippon, P. J.. On a growth condition related to the MacLane class. J. London Math. Soc. (2) 18 (1978), 94–100.CrossRefGoogle Scholar
[9]Rippon, P. J.. On subharmonic functions which satisfy a growth restriction. Proc. NATO ASI Durham (Academic Press), 485–492.Google Scholar
[10]Rippon, P. J.. Asymptotic values of continuous functions in Euclidean space. Math. Proc. Camb. Phil. Soc. 111 (1992), 309–318.CrossRefGoogle Scholar