Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T18:56:06.278Z Has data issue: false hasContentIssue false

Totally disconnected locally compact groups locally of finite rank

Published online by Cambridge University Press:  13 March 2015

PHILLIP WESOLEK*
Affiliation:
Université catholique de Louvain, Louvain-la-Neuve, Belgium. e-mail: [email protected]

Abstract

We study totally disconnected locally compact second countable (t.d.l.c.s.c.) groups that contain a compact open subgroup with finite rank. We show such groups that additionally admit a pro-π compact open subgroup for some finite set of primes π are virtually an extension of a finite direct product of topologically simple groups by an elementary group. This result, in particular, applies to l.c.s.c. p-adic Lie groups. We go on to obtain a decomposition result for all t.d.l.c.s.c. groups containing a compact open subgroup with finite rank. In the course of proving these theorems, we demonstrate independently interesting structure results for t.d.l.c.s.c. groups with a compact open pro-nilpotent subgroup and for topologically simple l.c.s.c. p-adic Lie groups.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barnea, Y., Ershov, M. and Weigel, T.Abstract commensurators of profinite groups. Trans. Amer. Math. Soc. 363, no. 10, (2011), 53815417.CrossRefGoogle Scholar
[2]Borel, A. and Tits, J.Homomorphismes “abstraits'' de groupes algébriques simples. Ann. of Math. (2) 97, (1973), 499571.CrossRefGoogle Scholar
[3]Bourbaki, N.Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), (Springer-Verlag, Berlin 1998). Translated from the French, Reprint of the 1989 English translation.Google Scholar
[4]Burger, M. and Mozes, S.CAT(-1)-spaces, divergence groups and their commensurators. J. Amer. Math. Soc. 9, no. 1, (1996), 5793.CrossRefGoogle Scholar
[5]Burger, M. and Mozes, S.Groups acting on trees: from local to global structure. Inst. Hautes Études Sci. Publ. Math., no. 92, (2000), 113150 (2001).Google Scholar
[6]Caprace, P.-E. and Monod, N.Decomposing locally compact groups into simple pieces. Math. Proc. Cambridge Philos. Soc. 150, no. 1, (2011), 97128.CrossRefGoogle Scholar
[7]Caprace, P.-E., Reid, C. and Willis, G. Locally normal subgroups of simple locally compact groups. ArXiv:1303.6755 [math.GR], http://arxiv.org/abs/1303.6755.Google Scholar
[8]Caprace, P.-E., Reid, C. and Willis, G. Locally normal subgroups of totally disconnected groups. Part I: General theory. ArXiv:1304.5144 [math.GR], http://arxiv.org/abs/1304.5144.Google Scholar
[9]Caprace, P.-E., Reid, C. and Willis, G. Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups. ArXiv:1401.3142 [math.GR], http://arxiv.org/abs/1401.3142.Google Scholar
[10]Cluckers, R., Cornulier, Y., Louvet, N., Tessera, R. and Valette, A.The Howe-Moore property for real and p-adic groups. Math. Scand. 109, no. 2, (2011), 201224.CrossRefGoogle Scholar
[11]Glöckner, H. and Willis, G.Uniscalar p-adic Lie groups. Forum Math. 13, no. 3, (2001), 413421.CrossRefGoogle Scholar
[12]Hewitt, E. and Ross, K.Abstract harmonic analysis. Vol. I, vol. 115 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (Springer-Verlag, Berlin 1979), second edn.CrossRefGoogle Scholar
[13]Lazard, M.Groupes analytiques p-adiques. Inst. Hautes Études Sci. Publ. Math., no. 26, (1965), 389603.Google Scholar
[14]Lubotzky, A. and Mann, A.Powerful p-groups. II. p-adic analytic groups. J. Algebra 105, no. 2, (1987), 506515.CrossRefGoogle Scholar
[15]Margulis, G. A.Discrete subgroups of semisimple Lie groups, vol. 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], (Springer-Verlag, Berlin 1991).CrossRefGoogle Scholar
[16]Me'nikov, O. V.Profinite groups with finitely generated Sylow subgroups. Dokl. Akad. Nauk Belarusi 40, no. 6, (1996), 3437, 123.Google Scholar
[17]Platonov, V. P.Locally projectively nilpotent subgroups and nilelements in topological groups. Izv. Akad. Nauk SSSR Ser. Mat. 30, (1966), 12571274.Google Scholar
[18]Reid, C.The generalised pro-fitting subgroup of a profinite group. Comm. Algebra 41, no. 1, (2013), 294308.CrossRefGoogle Scholar
[19]Ribes, L. and Zalesskii, P.Profinite groups, vol. 40 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], (Springer-Verlag, Berlin 2010), second edn.CrossRefGoogle Scholar
[20]Serre, J.-P.Lie algebras and Lie groups, vol. 1500 of Lecture Notes in Mathematics, (Springer-Verlag, Berlin 1992), second edn. 1964 lectures given at Harvard University.CrossRefGoogle Scholar
[21]Tits, J.Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, (Springer-Verlag, Berlin 1974).Google Scholar
[22]Wesolek, P. Elementary totally disconnected locally compact groups. ArXiv:1405.4851 [math.GR], http://arxiv.org/abs/1405.4851.Google Scholar
[23]Willis, G.Compact open subgroups in simple totally disconnected groups. J. Algebra 312, no. 1, (2007), 405417.CrossRefGoogle Scholar
[24]Wilson, J.Profinite groups, vol. 19 of London Mathematical Society Monographs. New Series, (The Clarendon Press Oxford University Press, New York 1998).CrossRefGoogle Scholar