Published online by Cambridge University Press: 24 October 2008
Let Aut G and Inn G denote the group of all automorphisms of the group G and the subgroup of all inner automorphisms of G, respectively. A group G is said to be complete if it has trivial centre and Aut G = Inn G. Examples of such groups abound and they have been the object of study for many years. Following Heineken (8) we call a group G semicomplete if Aut G = Inn G.