Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T13:33:08.487Z Has data issue: false hasContentIssue false

Topological decompositions of the duals of locally convex operator spaces

Published online by Cambridge University Press:  24 October 2008

D. J. Fleming
Affiliation:
St Lawrence University, Canton, New York 13617
D. M. Giarrusso
Affiliation:
St Lawrence University, Canton, New York 13617

Extract

If Z and E are Hausdorff locally convex spaces (LCS) then by Lb(Z, E) we mean the space of continuous linear maps from Z to E endowed with the topology of uniform convergence on the bounded subsets of Z. The dual Lb(Z, E)′ will always carry the topology of uniform convergence on the bounded subsets of Lb(Z, E). If K(Z, E) is a linear subspace of L(Z, E) then Kb(Z, E) will be used to denote K(Z, E) with the relative topology and Kb(Z, E)″ will mean the dual of Kb(Z, E)′ with the natural topology of uniform convergence on the equicontinuous subsets of Kb(Z, E)′. If Z and E are Banach spaces these provide, in each instance, the usual norm topologies.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bourbaki, N.Espacea vectoriels topologiques. (Masson, 1981.)Google Scholar
(2)Dixmier, J.Les fonctionnelles linéaires sur l'ensembles des opérateurs homés d'un espace de Hilbert. Ann. of Math. 51 (1950), 387408.CrossRefGoogle Scholar
(3)Feder, M.On the non-existence of a projection onto the space of compact operators. Canad. Math. Bull. 25 (1982), 7881.CrossRefGoogle Scholar
(4)Feder, M.Subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24 (1980), 196205.CrossRefGoogle Scholar
(5)Grothendieck, A.Topological vector spaces. (Gordon and Breach, New York, 1973.)Google Scholar
(6)Grothendieck, A.Produits tensoriels topologiques et espacesnucléaires. Mem. Amer. Math. Soc., no. 16, 1966.Google Scholar
(7)Hennefeld, J.A decomposition of B(X)* and unique Hahn-Banach extensions. Pacific J. Math. 46, (1973), 197199.CrossRefGoogle Scholar
(8)Lima, A.On M-ideals and best approximation. Indiana Univ. Math. J. 31 (1982), 2736.CrossRefGoogle Scholar
(9)Ruess, W.[Weakly] Compact operators and DF spaces. Pacific J. Math. 98 (1982), 419441.CrossRefGoogle Scholar
(10)Ruckle, W. H.Reflexivity of L(E, F). Proc. Amer. Math. Soc. 34 (1972), 171174.Google Scholar
(11)Saatkamp, K.M-ideals of compact operators. Math. Z. 158 (1978), 253263.CrossRefGoogle Scholar
(12)Saatkamp, K.Best approximation in the space of bounded operators and its applications. Math. Ann. 250 (1982), 3554.CrossRefGoogle Scholar