Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T23:24:40.319Z Has data issue: false hasContentIssue false

A theorem on Kampé de Fériet function

Published online by Cambridge University Press:  24 October 2008

G. P. Srivastava
Affiliation:
Department of Mathematics, D.A.V. College, Kanpur, India
S. Saran
Affiliation:
Department of Mathematics, Punjabi University, Patiala, India

Extract

Kampé de Fériet (l) has defined a generalized hypergeometric function of two variables as

where ∏(σp)s stands for the product (σ1)s2)s … (σp)s.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Appell, P. and Kampé, J. De Fériet.Fonctions hypérgeometriques et hypérsperiques (1926).Google Scholar
(2)Carlitz, L.A Saalchützian theorem for double series. J. London Math. Soc. 38 (1963), 415418.CrossRefGoogle Scholar
(3)Carlitz, L.Another Saalschützian theorem for double series. Rend. Sem. Univ. Padova 34 (1964), 200203.Google Scholar
(4)Pandey, R. C. and Saran, S.On the hypergeometric functions of higher order in two variables. Proc. Rajasthan Acad. Sci. 10 (1963), 13.Google Scholar
(5)Srivastava, G. P. and Saran, S.Integrals, involving Kampé de Fériet functions. Math. Z. 98 (1967), 119125.CrossRefGoogle Scholar
(6)Watson, G. N.A treatise on the theory of Bessel functions (Cambridge, 1944).Google Scholar