Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T13:39:42.330Z Has data issue: false hasContentIssue false

Surjective isometries between real JB*-triples

Published online by Cambridge University Press:  02 November 2004

FRANCISCO J. FERNÁNDEZ–POLO
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. e-mail: [email protected], [email protected] and [email protected]
JUAN MARTÍNEZ
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. e-mail: [email protected], [email protected] and [email protected]
ANTONIO M. PERALTA
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. e-mail: [email protected], [email protected] and [email protected]

Extract

In [19], R. Kadison proved that every surjective linear isometry $\Phi{:}\, {\C A} \to {\C B}$ between two unital C*-algebras has the form $$\Phi (x) = u T (x), \hbox{ $x\in {\C A}$,}$$ where $u$ is a unitary element in ${\C B}$ and $T$ is a Jordan *-isomorphism from${\C A}$ onto ${\C B}$. This result extends the classical Banach–Stone theorem [3, 32] obtained in the 1930s to non-abelian unital C*-algebras. A. L. Paterson and A. M. Sinclair extended Kadison's result to surjective isometries between C*-algebras by replacing the unitary element $u$ by a unitary element in the multiplier C*-algebra of the range algebra [28]. Thus, every surjective linear isometry between C*-algebras preserves the triple products as $$\J xyz \,{=}\, 2^{-1} ( x y^* z + z y^* x).$$

Type
Research Article
Copyright
© 2004 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)