No CrossRef data available.
Summability factors for Riesz loǵarithmic means of order one for a Fourier series†
Published online by Cambridge University Press: 24 October 2008
Extract
Let 0 < λ1 < λ2 < … < λn → ∞ (n→∞). We write
Let ∑an be a given infinite series with the sequence {sn} for its nth partial sum. The (R, λ, 1) mean of the sequence {sn} is given by
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 67 , Issue 2 , March 1970 , pp. 307 - 320
- Copyright
- Copyright © Cambridge Philosophical Society 1970
References
REFERENCES
(2)Bosanquet, L. S.The absolute Cesàro summability of a Fourier series. Proc. London Math. Soc. (2) 41 (1936), 517–528.CrossRefGoogle Scholar
(3)Bosanquet, L. S.Note on Convergence and summability factors (III). Proc. London Math. Soc. (2) 50 (1948), 482–496.CrossRefGoogle Scholar
(4)Bosanquet, L. S.The Cesàro summability of Fourier series and allied series. Proc. London Math. Soc. 37 (1934), 17–32.CrossRefGoogle Scholar
(5)Chow, H. C.Note on convergence and summability factors. J. London Math. Soc. 29 (1954), 459–478.CrossRefGoogle Scholar
(6)Chow, H. C.On the summability factors of a Fourier series. J. London Math. Soc. 16 (1941), 215–220.CrossRefGoogle Scholar
(7)Hardy, O. H. and Littlewood, J. E.Sur la séries de Fourier d'une fonction à carré sommable. C. B. Acad. Sci., Paris, 156 (1913), 1301–1309.Google Scholar
(8)Hardy, G. H. and Littlewood, J. E.The strong summability of Fourier series. Fund. Math. 25 (1935), 162–189.CrossRefGoogle Scholar
(9)Lal, S. N.On the absolute harmonic summability of the factored Fourier series. Proc. Amer. Math. Soc. 14 (1963), 311–319.Google Scholar
(10)Liu, T. S.On the absolute Cesàro summability factors of Fourier series. Proc. Japan Acad. 41 (1965), 757–762.Google Scholar
(11)Moranty, R.On the Summability |R, logω, 1| of a Fourier series. J. London Math. Soc. 25 (1950), 67–72.CrossRefGoogle Scholar
(14)Pati, T. and Sinha, S. R.On the absolute summability factors of a Fourier series. Indian J. Math. 1 (1958), 41–54.Google Scholar
(15)Sunouchi, O.Note on Fourier Analysis (XLIV): On the summation of a Fourier series. Tôhoku Math. J. (2), 3 (1951), 114–122.Google Scholar
(16)Sunouchi, G.On the absolute summability factors. Kōdai Math. Sem. Rep. 1 (1954), 59–62.Google Scholar
(17)Szasz, O.Converse theorems of summability for Dirichlet's series. Trans. Amer. Math. Soc. 39 (1936), 117–130.Google Scholar