Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T21:39:59.001Z Has data issue: false hasContentIssue false

Subplanes of the Hughes plane of order 9

Published online by Cambridge University Press:  24 October 2008

R. H. F. Denniston
Affiliation:
University of Leicester

Extract

The literature of finite projective planes consists largely of general investigations, taking in as many as possible of these systems at once. However, the geometry in a specific finite plane may well be an amusing, and not entirely trivial, field of study on its own. Some papers (5, 9, 13) have in fact appeared on the geometry of the translation plane of order 9: but the Hughes plane of the same order has comparatively been neglected. The object of the present paper is to make a beginning with the study of this plane from a synthetic point of view.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baer, R.Projectivities with fixed points on every line of the plane. Bull. Amer. Math. Soc. 52 (1946), 273286.CrossRefGoogle Scholar
(2)Barlotti, A.La determinazione del gruppo delle proiettività di una retta in sé in alcuni particolari piani grafici finiti non desarguesiani. Boll. Un. Mat. Ital. (3) 14 (1959), 543547.Google Scholar
(3)Bose, R. C. and Nair, K. R.On complete sets of latin squares. Sankhya̅ 5 (1940/1941), 361382.Google Scholar
(4)Carmichael, R. D.Introduction to the theory of groups of finite order (Ginn, Boston, 1937).Google Scholar
(5)Corsi, Gabriella. Sui triangoli omologici in un piano sul quasicorpo associative di ordine 9. Matematiche Catania 14 (1959), 4066.Google Scholar
(6)Hall, M. Jr, Swift, J. D. and Killgrove, R.On projective planes of order nine. Math. Tables and Other Aids to Comp. 13 (1959), 233246.CrossRefGoogle Scholar
(7)Hughes, D. R.A class of non-desarguesian projective planes. Canad. J. Math. 9 (1957), 378388.CrossRefGoogle Scholar
(8)Killgrove, R. B.Completions of quadrangles in projective planes II. Canad. J. Math. 17 (1965), 155165.CrossRefGoogle Scholar
(9)Magari, R.Le configurazioni parziali chiuse contenute nel piano, P, sul quasicorpo associativo di ordine 9. Boll. Un. Mat. Ital. (3) 13 (1958), 128140.Google Scholar
(10)Martin, G. E.On arcs in a finite projective plane. Canad. J. Math. 19 (1967), 376393.CrossRefGoogle Scholar
(11)Ostrom, T. G.Semi-translation planes. Trans. Amer. Math. Soc. 111 (1964), 118.CrossRefGoogle Scholar
(12)Ostrom, T. G.Finite planes with a single (p, L) transitivity. Arch. Math. 15 (1964), 378384.CrossRefGoogle Scholar
(13)Rodriquez, G.Le sub-collineazioni nel piano eccezionale di ordine 9. Matematiche Catania 15 (1960), 6677.Google Scholar
(14)Rosati, L. A.Su una nuova classe di piani grafici. Ricerche di Mat. 13 (1964), 3955.Google Scholar
(15)Veblen, O. and Wedderburn, J. H. M.Non-Desarguesian and non-Pascalian geometries. Trans. Amer. Math. Soc. 8 (1907), 379388.CrossRefGoogle Scholar
(16)Zappa, G.Sui gruppi di collineazioni dei piani di Hughes. Boll. Un. Mat. Ital. (3) 12 (1957), 507516.Google Scholar