Structure of a foliated neighbourhood
Published online by Cambridge University Press: 24 October 2008
Extract
C. Ehresmann (2) has shown that if a leaf L of a smooth foliation has a foliated neighbourhood, then there exists a fibre bundle over L, normal to the leaves, with discrete structure group. Using the concept of a microbundle and the n-isotopy extension theorem, we find a similar result for both PL and TOP categories, and, in addition, show that the structure group can be chosen to be the holonomy group of L. As for applications we show that holonomy characterizes the foliated neighbourhood of a leaf (proved by Haefliger in the differentiable case (3)). In particular, if the holonomy group of a compact leaf L is trivial then the leaf has a trivial foliated neighbourhood, and if it is finite it has a neighbourhood of compact leaves which are covering spaces of L. Another corollary is the known result that a proper submersion with compact fibre is a fibration. Finally we use the fact that the constructed normal microbundle can be chosen to have its fibres contained in the leaves of a transverse foliation to demonstrate isotopy uniqueness of normal microbundles.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 79 , Issue 1 , January 1976 , pp. 101 - 110
- Copyright
- Copyright © Cambridge Philosophical Society 1976
References
REFERENCES
- 2
- Cited by