Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Heading, J.
1957.
The Stokes phenomenon and certain nth-order differential equations II. The Stokes phenomenon.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 53,
Issue. 2,
p.
419.
Heading, J.
1960.
The Stokes phenomenon and certain nth-order differential equations.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 56,
Issue. 4,
p.
329.
Wasow, Wolfgang
1961.
Turning point problems for systems of linear differential equations part I: The formal theory.
Communications on Pure and Applied Mathematics,
Vol. 14,
Issue. 3,
p.
657.
Duty, R. L.
1962.
A note on the Stokes phenomenon.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 58,
Issue. 4,
p.
706.
Heading, J.
1963.
Uniform approximate solutions of certain nth-order differential equations. I.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 59,
Issue. 1,
p.
95.
Cavaliere, A.
Crosignani, B.
and
Gratton, P.
1964.
Motion of a Charge in Changing Magnetic Fields with Nonadiabatic Intervals.
Il Nuovo Cimento,
Vol. 33,
Issue. 5,
p.
1338.
Kiyek, K.
1967.
Über eine spezielle klasse linearer differentialsysteme mit einem kleinen parameter.
Archive for Rational Mechanics and Analysis,
Vol. 25,
Issue. 2,
p.
135.
Swanson, C. A.
and
Headley, V. B.
1967.
An Extension of Airy’s Equation.
SIAM Journal on Applied Mathematics,
Vol. 15,
Issue. 6,
p.
1400.
Atakishiev, N. M.
1969.
Asymptotic behavior of the Green's function in some models of nonrenormalizable field theory.
Theoretical and Mathematical Physics,
Vol. 1,
Issue. 1,
p.
46.
McHugh, James A. M.
1971.
An historical survey of ordinary linear differential equations with a large parameter and turning points.
Archive for History of Exact Sciences,
Vol. 7,
Issue. 4,
p.
277.
Braaksma, B. L. J.
1971.
Asymptotic Analysis of a Differential Equation of Turrittin.
SIAM Journal on Mathematical Analysis,
Vol. 2,
Issue. 1,
p.
1.
Turrittin, H. L.
1971.
Analytic Theory of Differential Equations.
Vol. 183,
Issue. ,
p.
145.
Kohno, Mitsuhiko
1974.
A two point connection problem for general linear ordinary differential equations.
Hiroshima Mathematical Journal,
Vol. 4,
Issue. 2,
Greville, T. N. E.
1974.
On a Problem of E. L. De Forest in Iterated Smoothing.
SIAM Journal on Mathematical Analysis,
Vol. 5,
Issue. 3,
p.
376.
Heading, John
1975.
Further transformable nth order differential equations with transition points of particular order m.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 77,
Issue. 1,
p.
145.
Heading, John
1975.
2.—Barriers bounded by Two Transition Points of Arbitrary Odd Order.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 73,
Issue. ,
p.
51.
Heading, John
1979.
Generalized approximate methods for transmission through a barrier governed by a differential equation of order 2n.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 85,
Issue. 2,
p.
361.
Paris, R. B.
and
Wood, A. D.
1981.
On the L2 nature of solutions of nth order symmetric differential equations and McLeod's conjecture.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 90,
Issue. 3-4,
p.
209.
Schäfke, Reinhard
1985.
Über das globale Verhalten der Normallösungen von x′(t) = (B + t−1A) x(t) und zweier Arten von assoziierten Funktionen.
Mathematische Nachrichten,
Vol. 121,
Issue. 1,
p.
123.
Paris, R. B.
and
Wood, A. D.
1987.
Results old and new on the hyper-Bessel equation.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 106,
Issue. 3-4,
p.
259.