Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T07:53:28.685Z Has data issue: false hasContentIssue false

Stable range in C*-algebras

Published online by Cambridge University Press:  24 October 2008

A. Guyan Robertson
Affiliation:
University of Edinburgh

Extract

A unital C*-algebra A is said to have unitary 1-stable range (8) if for all pairs a, b of elements of A satisfying aA + bA = A there exists a unitary u in A such that a + bu is invertible. This concept is somewhat stronger than the usual stable range condition of algebraic K-theory ((3), chapter V). Handelman(8) shows among other things that finite AW*-algebras have unitary 1-stable range and uses this fact to study the algebraic K1 of a finite AW*-algebra. We prove below that a unital C*-algebra has unitary 1-stable range if and only if its group of invertible elements is dense. In addition we give some consequences of this fact and consider the related question of (unitary) polar decomposition in C*-algebras.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Akemann, C. A., Pedersen, G. K. and Tomiyama, J.Multipliers of C*-algebras. J. Functional Analysis 13 (1973), 277301.CrossRefGoogle Scholar
(2)Atalla, R. E.P-sets in F′.spaces. Proc. Amer. Math. Soc. 46 (1974), 125132.Google Scholar
(3)Bass, H.Algebraic K-theory (Benjamin, New York, 1968).Google Scholar
(4)Cantwell, J.A topological approach to extreme points in function spaces. Proc. Amer. Math. Soc. 19 (1968), 821825.CrossRefGoogle Scholar
(5)Choda, H.An extremal property of the polar decomposition in von Neumann algebras. Proc. Japan Acad. 46 (1970), 342344.Google Scholar
(6)Gillman, L. and Jerison, M.Rings of continuous functions (van Nostrand, 1960).CrossRefGoogle Scholar
(7)Halmos, P. R.A Hilbert space problem booh (van Nostrand, 1967).Google Scholar
(8)Handelman, D.Stable range in AW*-algebras. Proc. Amer. Math. Soc. 76 (1979), 241249.Google Scholar
(9)Kaplansky, I.Projections in Banach algebras. Ann. of Math. 53 (1951), 235249.Google Scholar
(10)Nagata, J.Modern dimension theory (Academic Press, 1970).Google Scholar
(11)Phelps, R. R.Extreme points in function algebras. Duke Math. J. 32 (1965), 267277.CrossRefGoogle Scholar
(12)Robertson, A. G.A note on the unit ball in C*-algebras. Bull. London Math. Soc. 6 (1974), 333335.Google Scholar
(13)Robertson, A. G.Averages of extreme points in complex function spaces. J. London Math. Soc. 19 (1979), 345347.CrossRefGoogle Scholar
(14)Sakai, S.C*-algebras and W*-algebras (Berlin, Springer, 1971).Google Scholar