Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:28:11.405Z Has data issue: false hasContentIssue false

The spectrum (Pbo) −∞

Published online by Cambridge University Press:  24 October 2008

Donald M. Davis
Affiliation:
Lehigh University, Bethlehem, PA 18015
Mark Mahowald
Affiliation:
Northwestern University, Evanston, IL 60201

Extract

There are spectra P−k constructed from stunted real projective spaces as in [1] such that H*(P−k) is the span in ℤ/2[x, x−1] of those xi with i ≥ −k. (All cohomology groups have ℤ/2-coefficients unless specified otherwise.) Using collapsing maps, these form an inverse system

which is similar to those of Lin ([15], p. 451). It is a corollary of Lin's work that there is an equivalence of spectra

where holim is the homotopy inverse limit ([3], ch. 5) and Ŝ–1 the 2-adic completion of a sphere spectrum. One may denote by this holim (P–κ), although one must constantly keep in mind that , but rather

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adams, J. F.. Operations of the nth kind in K-theory and what we don't know about BP. In New Developments in Topology, L.M.S. Lecture Notes Series no. 11 (Cambridge University Press, 1974), 19.Google Scholar
[2] Atiyah, M. F., Bott, R. and Shapiro, A.. Clifford modules. Topology 3 (1964), 333.Google Scholar
[3] Bousfield, A. K.. The localization of spectra with respect homology. Topology 18 (1979), 257281.CrossRefGoogle Scholar
[4] Crabb, M. C.. On the KOℤ2-Euler class. To appear.Google Scholar
[5] Davis, D. M.. Generalized homology and the generalized vector field problem. Quart. J. Math. Oxford Ser. (2) 25 (1974), 169193.Google Scholar
[6] Davis, D. M.. On the cohomology of MO〈8〉. Proc. Adem Topology Conf., Contemporary Mathematics, vol. 12 (American Mathematical Society, 1982), 91104.Google Scholar
[7] Davis, D. M., Gitler, S., Iberkleid, W. and Mahowald, M.. Orientability of bundles with respect to certain spectra. Bol. Soc. Mat. Mexicana (2) 24 (1979), 4955.Google Scholar
[8] Davis, D. M., Gitler, S. and Mahowald, M.. The stable geometric dimension of vector bundles over real projective spaces. Trans. Amer. Math. Soc. 268 (1981), 3961.Google Scholar
[9] Davis, D. M. and Mahowald, M.. Obstruction Theory and ko-theory, Leature Notes in Mathematics, vol. 658 (Springer-Verlag, 1978), 134164.Google Scholar
[10] Davis, D. M. and Mahowald, M.. The Euler class for connective fco-theory and an application to immersions of quarternionic projective space. Indiana Univ. Math. J. 28 (1979), 10251034.Google Scholar
[11] Gitler, S., Mahowald, M. and Milgram, R. J.. The non-immersion problem for RP n and higher order cohomology operations. Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 432437.CrossRefGoogle Scholar
[12] Johnson, D. C. and Wilson, W. S.. Projective dimension and Brown-Peterson homology. Topology 12 (1973), 327353.CrossRefGoogle Scholar
[13] Jones, J. D. S. and Wegmann, S. A.. Limits of stable homotopy and cohomotopy groups. Math. Proc. Cambridge Philos. Soc. 94 (1983), 473482.CrossRefGoogle Scholar
[14] Kahn, D. S. and Priddy, S. B.. Applications of the transfer to stable homotopy theory. Bull. Amer. Math. Soc. (N.S.) 78 (1972), 981987.CrossRefGoogle Scholar
[15] Lin, W. H.. On conjectures of Mahowald, Segal and Sullivan. Math. Proc. Cambridge Philos. Soc. 87 (1980), 449458.CrossRefGoogle Scholar
[16] Lin, W. H., Davis, D. M., Mahowald, M. E. and Adams, J. F.. Calculation of Lin's Ext groups. Math. Proc. Cambridge Philos. Soc. 87 (1980), 459469.CrossRefGoogle Scholar
[17] Mahowald, M.. The metastable homotopy of Sn. Mem. Amer. Math. Soc. 72 (1967).Google Scholar
[18] Mahowald, M.. The image of J in the EHP sequence. Ann. of Math. (2) 116 (1982), 65112.CrossRefGoogle Scholar
[19] Mahowald, M. and Milgram, R. J.. Operations which detect Sq 4 in connective K-theory and their applications. Quart. J. Math. Oxford Ser. (2) 27 (1976), 415432.CrossRefGoogle Scholar
[20] Mahowald, M. and Ray, N.. A note on the Thom isomorphism. Proc. Amer. Math. Soc. 82 (1981), 307308.CrossRefGoogle Scholar
[21] Wu, W. T.. Classes caractéristiques et i-carrés d'une variété. C.R. Acad. Sci. Paris 230 (1950), 508511.Google Scholar