Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T11:25:14.501Z Has data issue: true hasContentIssue false

Some probability limit theorems with statistical applications

Published online by Cambridge University Press:  24 October 2008

P. H. Diananda
Affiliation:
Department of MathematicsUniversity of Malaya

Extract

In fundamental papers Bernstein (3) and Loève(8) have proved central limit theorems for wide classes of dependent variables. Their theorems are stated in terms of conditional distributions. In the case of dn-dependent variables (see § 3) they assume the existence, as the ‘conditioning’ variates vary, of finite upper bounds for certain conditional absolute moments higher than the second. More recently, Hoeffding and Robbins (7) have proved central limit theorems for m-dependent variables with finite third absolute moments, and Moran(10) has given a direct generalization of the Lindeberg-Lévy theorem for stationary discrete linear scalar processes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bartlett, M. S.On the theoretical specification and sampling properties of autocorrelated time series. Suppl. J.R. statist. Soc. 8 (1946), 2741.CrossRefGoogle Scholar
(2)Bartelett, M. S. and Diananda, P. H.Extensions of Quenouille's test for autoregressive schemes. J.R. statist. Soc. B, 12 (1950), 108–15.Google Scholar
(3)Bernstein, S.Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes. Math. Ann. 97 (1927), 159.CrossRefGoogle Scholar
(4)Cramér, H.Mathematical methods of statistics (Princeton, 1946).Google Scholar
(5)Diananda, P. H. Contributions to the theory of statistical estimation (Ph.D. dissertation, 1949, available in the Cambridge University Library).Google Scholar
(6)Fréchet, M.Recherches théoriques modernes sur la théorie des probabilités, vol. 1 (Paris, 1951).Google Scholar
(7)Hoeffding, W. and Robbins, H.The central limit theorem for dependent variables. Duke math. J. 15 (1948), 773–80.CrossRefGoogle Scholar
(8)Loève, M.Étude asymptotique des sommes de variables aléatoires liées. J. Math. pures appl. 24 (1945), 249318.Google Scholar
(9)Mann, H. B. and Wald, A.On the statistical treatment of linear stochastic difference equations. Econometrica, 11 (1943), 173220.CrossRefGoogle Scholar
(10)Moran, P. A. P.Some theorems on time series. I. Biometrika, 34 (1947), 281–91.CrossRefGoogle Scholar
(11)Uspensky, J. V.Introduction to mathematical probability (New York, 1937), p. 30.Google Scholar
(12)Wold, H.A study in the analysis of stationary time series (Uppsala, 1938), p. 53.Google Scholar