Some definite integrals involving Legendre functions
Published online by Cambridge University Press: 24 October 2008
Extract
The integral
where n is a positive integer, was obtained recently by Van der Pol by operational methods.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 26 , Issue 4 , October 1930 , pp. 475 - 479
- Copyright
- Copyright © Cambridge Philosophical Society 1930
References
* Phil. Mag. 8 (1929), 861–898 (70).CrossRefGoogle Scholar
† See G. N. Watson, Theory of Bessel Functions, § 12·2 (4).
‡ G. N. Watson, loc. cit. § 12·2 (3).
§ G. N. Watson, loc. cit. § 12·21.
* G. N. Watson, loc. cit. § 12·2 (4).
† Bailey, W. N., “Some integrals of Kapteyn's type involving Bessel functions”, Proc. London Math. Soc. (2), 30 (1930), 422–424.CrossRefGoogle Scholar See also Bailey, W. N., “Some definite integrals involving Bessel functions”, Proc. London Math. Soc. (2), 31 (1930), 200–208.Google Scholar
* G. N. Watson, loc. cit. § 5·22 (7).
- 2
- Cited by