Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T19:02:57.188Z Has data issue: false hasContentIssue false

The solution of the Schrödinger equation for finite systems, with special reference to the motion of electrons in Coulomb electric fields and uniform magnetic fields

Published online by Cambridge University Press:  24 October 2008

R. B. Dingle
Affiliation:
Royal Society Mond LaboratoryCambridge*

Abstract

A number of methods are formulated for solving the Schrödinger equation for systems of finite extent. The methods are developed in detail for the particular case of an electron moving in a Coulomb field (e.g. hydrogen-like atom), with a boundary consisting of a sphere of given radius. In the second part of the paper these results are transformed into those for an electron moving in a uniform magnetic field, the boundary of the system being cylindrical.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REEFERENCES

(1)Dingle, R. B.Phil. Mag. (7), 40 (1949), 573.CrossRefGoogle Scholar
(2)Dingle, R. B.Proc. roy. Soc. A, 211 (1952), 500.Google Scholar
(3)Dingle, R. B.Proc. roy. Soc. A, 212 (1952), 47.Google Scholar
(4)Flint, H. T.Wave mechanics (London, 1938).Google Scholar
(5)Fröhlich, H.Phys. Rev. (2), 54 (1938), 945.CrossRefGoogle Scholar
(6)Hartree, D. R.Proc. Camb. phil. Soc. 24 (1928), 426.CrossRefGoogle Scholar
(7)Heitler, W.Z. Phys. 44 (1927), 161.CrossRefGoogle Scholar
(8)Jahnke, E. and Emde, F.Tables of functions, 4th ed. (New York, 1945).Google Scholar
(9)Jeffreys, H. and Jeffreys, B. S.Methods of mathematical physics, 2nd ed. (Cambridge, 1950).Google Scholar
(10)London, F.Proc. roy. Soc. A, 153 (1936), 576.Google Scholar
(11)Michels, A., Boer, J. H. de and Bijl, A.Physica, ‘s Grav., 4 (1937), 981.Google Scholar
(12)Sommerfeld, A.Wave mechanics (London, 1930).Google Scholar
(13)Sommerfeld, A. and Welker, H.Ann. Phys., Lpz. (5), 32 (1938), 56.CrossRefGoogle Scholar
(14)Stoneley, R.Mon. Not. R. astr. Soc. geophys. Suppl. 3 (1934), 226.CrossRefGoogle Scholar
(15)Straubel, R.Ingen.-Arch. 13 (1942), 14.CrossRefGoogle Scholar
(16)Wasserman, G. D.Proc. Camb. phil. Soc. 44 (1948), 251.CrossRefGoogle Scholar
(17)Watson, G. N.Theory of Bessel functions (Cambridge, 1922).Google Scholar
(18)Webb, H. A. and Airey, J. R.Phil. Mag. (6), 36 (1918), 129.CrossRefGoogle Scholar
(19)Whittaker, E. T. and Watson, G. N.Modern analysis, 4th ed. (Cambridge, 1927).Google Scholar
(20)Wigner, E. and Seitz, F.Phys. Rev. (2), 46 (1934), 509.CrossRefGoogle Scholar