Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T11:23:02.471Z Has data issue: false hasContentIssue false

SO(3) quantum invariants are dense

Published online by Cambridge University Press:  20 November 2009

HELEN WONG*
Affiliation:
Dept of Mathematics, Carleton College, 1 North College St Northfield, MN 55057 e-mail: [email protected]

Abstract

We show that when r ≥ 5 is prime, the SO(3) Witten–Reshetikhin–Turaev quantum invariants for three-manifolds at the level r form a dense set in the complex plane. This confirms a conjecture of Larsen and Wang.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blanchet, C.Invariants on three-manifolds with spin structure. Comment. Math. Helv. 67 (1992), 406427.CrossRefGoogle Scholar
[2]Blanchet, C., Habegger, N., Masbaum, G. and Vogel, P.Topological quantum field theories derived from the Kauffman bracket. Topology 34 (1995), 883927.CrossRefGoogle Scholar
[3]Freedman, M., Larsen, M. and Wang, Z.The two-eigenvalue problem and density of Jones representation of braid groups. Commun. Math. Phys. 228 (2002), 177199.CrossRefGoogle Scholar
[4]Freedman, M., Kitaev, A., Larsen, M. and Wang, Z.Topological quantum computation. Bull. Amer. Math. Soc. 40 (2003), 3138.CrossRefGoogle Scholar
[5]Hardy, G. and Wright, E.An Introduction to the Theory of Numbers (Clarendon Press, Oxford Univerity Press, 1979).Google Scholar
[6]Lickorish, W. B. R.Skeins and handlebodies. Pacific J. Math 159 (1993), 337350.CrossRefGoogle Scholar
[7]Lickorish, W. B. R.The skein method for three-manifold invariants. J. Knot Theory Ramifications 2 (1993), no. 2, 171194.CrossRefGoogle Scholar
[8]Lickorish, W. B. R.Quantum invariants of 3-manifolds. Handbook of geometric topology, 707734. (North-Holland, 2002).Google Scholar
[9]Larsen, M. and Wang, Z.Density of the SO(3) TQFT representation of mapping class groups. Commun. Math. Phys. 260 (2005), 641658.CrossRefGoogle Scholar
[10]Masbaum, G. and Roberts, J.On central extensions of mapping class groups. Math. Ann. 302 (1995), no. 1, 131150.CrossRefGoogle Scholar
[11]Roberts, J.Skeins and mapping class groups. Math. Proc. Camb. Phil. Soc. 115 (1994), 5377.CrossRefGoogle Scholar
[12]Roberts, J.Irreducibility of some quantum representations of mapping class groups. Knots in Hellas 1998, Vol. 3 (Delphi). J. Knot Theory Ramifications 10 (2001), no. 5, 763767.CrossRefGoogle Scholar
[13]Reshetikhin, R. and Turaev, V.Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), 547597.CrossRefGoogle Scholar
[14]Turaev, V.Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, 18 (Walter de Gruyter & Co., 1994.)CrossRefGoogle Scholar
[15]Witten, E.Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121 (1989), 351399.CrossRefGoogle Scholar