Article contents
Small sets containing any pattern
Published online by Cambridge University Press: 31 July 2018
Abstract
Given any dimension function h, we construct a perfect set E ⊆ ${\mathbb{R}}$ of zero h-Hausdorff measure, that contains any finite polynomial pattern.
This is achieved as a special case of a more general construction in which we have a family of functions $\mathcal{F}$ that satisfy certain conditions and we construct a perfect set E in ${\mathbb{R}}^N$, of h-Hausdorff measure zero, such that for any finite set {f1,. . .,fn} ⊆ $\mathcal{F}$, E satisfies that $\bigcap_{i=1}^n f^{-1}_i(E)\neq\emptyset$.
We also obtain an analogous result for the images of functions. Additionally we prove some related results for countable (not necessarily finite) intersections, obtaining, instead of a perfect set, an $\mathcal{F}_{\sigma}$ set without isolated points.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 168 , Issue 1 , January 2020 , pp. 57 - 73
- Copyright
- Copyright © Cambridge Philosophical Society 2018
Footnotes
†The research for this paper was partially supported by grants UBACyT 2014-2017 20020130100403BA, PIP 11220110101018 (CONICET) and PICT 2014 - 1480, MinCyT.
References
REFERENCES
- 3
- Cited by