No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
1. Introduction. The problem considered here derives its motivation from a paper by Friedlander (8) on the propagation of small disturbances in a compressible, conducting fluid in the presence of a uniform magnetic field (see also Courant and Hilbert (3), VI, §3a). In this the displacement current and energy dissipation by viscosity, heat conduction and Joule heat are neglected and a system of linear partial differential equations is obtained, which generalizes the equations of motion of the theory of sound. Their solution is in general the superposition of an arbitrary incompressible Alfven wave and a magneto-acoustic disturbance. This latter was considered by constructing a Green's function by means of suitable combinations of plane wave solutions and it was found that there are fast and slow wave fronts diverging from a point disturbance. The latter are conoidal in shape and have a singularity at their vertices which propagate along the field line in either direction from the source.