Article contents
Sharp inequalities for trigonometric sums
Published online by Cambridge University Press: 10 March 2003
Abstract
We prove the following two theorems:
(I) Let $n \geqslant 1$ be a (fixed) integer. Then we have for $\theta \in (0, \pi)$: \[ \sum\limits^n_{k=1}\frac{\cos (k\theta)}{k}\leqslant -\log\left(\sin\left(\frac{\theta}{2}\right)\right)+\frac{\pi-\theta}{2}+\sigma_n, \] with the best possible constant $\sigma_n = \sum\nolimits^n_{k=1}(-1)^k/k$.
(II) For even integers $n \geqslant 2$ and for $\theta \in (0, \pi)$ we have \[ \sum\limits^n_{k=1}\frac{\sin(k\theta)}{k}\leqslant\alpha(\pi-\theta), \] with the best possible constant $\alpha = 0.66 395\ldots$.
Our results refine inequalities due to C. Hyltén-Cavallius ‘11’ and P. Turán ‘23’, respectively.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 134 , Issue 1 , January 2003 , pp. 139 - 152
- Copyright
- 2003 Cambridge Philosophical Society
- 7
- Cited by