Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:42:48.574Z Has data issue: false hasContentIssue false

The self-intersection formula and the ‘formule-clef’

Published online by Cambridge University Press:  24 October 2008

A. T. Lascu
Affiliation:
Université de Montréal, Harvard University, University of Sussex
D. Mumford
Affiliation:
Université de Montréal, Harvard University, University of Sussex
D. B. Scott
Affiliation:
Université de Montréal, Harvard University, University of Sussex

Extract

We shall consider exclusively algebraic non-singular quasi-projective irreducible varieties over an algebraically closed field. If V is such a variety will be the Chow ring of rational equivalence classes of cycles of V

and the group homomorphism defined by any proper morphism φ: V1V2. Also

denotes the ring homomorphism defined by φ.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Borel, A. and Serre, J.-P.Le théorème de Riemann-Roch. Bull. Soc. Math. France 86 (1958), 97136.Google Scholar
(2)Berthelot, A., Grothendieck, A. and Illusie, L. Thérie des intersections et théorème de Riemann-Roch. SGA6, Springer Lecture Notes no. 225.Google Scholar
(3)Grothendieck, A. Sur quelques propriétés fondamentales en théorie des intersections. Anneaux de Chow et applications. Séminaire G. Chevalley, 2e année (1958).Google Scholar
(4)Grothendieck, A.La théorie des classes de Chern. Bull. Soc. Math. France 86 (1958), 137159.Google Scholar
(5)Ilori, S., Ingleton, A. W. and Lascu, A. T.On a formula of D. B. Scott. J. London Math. Soc. (2), 8 (1974), 539544.CrossRefGoogle Scholar
(6)Jouanolou, J. P.Riemann-Roch sans dénominateurs. Inventiones Math. 11 (1970), 1526.CrossRefGoogle Scholar
(7)Lascu, A. T. and Scott, D. B.An algebraic correspondence with applications to projective bundles and blowing-up Chern classes. Annali di Matematica pura ed applicata (to appear).Google Scholar