Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T18:59:31.808Z Has data issue: false hasContentIssue false

Schur Q-functions and cohomology of isotropic Grassmannians

Published online by Cambridge University Press:  24 October 2008

Tadeusz Józefiak
Affiliation:
Institute of Mathematics, Polish Academy of Sciences, Chopina 12, 87-100 Toruń, Poland

Abstract

We prove that for homogeneous spaces of isotropic Grassmannians the Borel map sends the basis of a truncated algebra of Schur Q-functions consisting of Q-functions or P-functions (depending on a case) onto the basis dual to the basis of Schubert cycles.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bernstein, I. N., Gelfand, I. M. and Gelfand, S. I.. Schubert cells and cohomology of the spaces G/P. Math. Surveys 28 (1973), 326 (in Russian).CrossRefGoogle Scholar
[2]Demazure, M.. Invariants symétrique des groupes de Weyl et torsion. Invent. Math. 21 (1973), 287301.CrossRefGoogle Scholar
[3]Hiller, H.. Combinatorics and intersection of Schubert varieties. Comment. Math. Helv. 57 (1982), 4159.CrossRefGoogle Scholar
[4]Hiller, H. and Boe, B.. Pieri formula for SO2n+1/Un and Spn/Un. Advances in Math. 62 (1986), 4967.CrossRefGoogle Scholar
[5]Józeflak, T.. Characters of projective representations of symmetric groups. Expo. Math. 7 (1989), 193247.Google Scholar
[6]Macdonald, I. G.. Symmetric functions and Hall polynomials. Clarendon Press, Oxford, 1979.Google Scholar
[7]Morris, A. O.. A note on multiplication of Hall functions. J. London Math. Soc. 39 (1964), 481488.CrossRefGoogle Scholar
[8]Pragacz, P.. Algebro-geometric applications of Schur S- and Q-polynomials. Seminaire d'algèbre Dubreil-Malliavin (to appear).Google Scholar
[9]Schur, I.. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Sustitutionen. J. Reine Angew. Math. 139 (1911), 155250.Google Scholar
[10]Stembridge, J. R.. Shifted tableaux and the projective representations of symmetric groups. Advances in Math. 74 (1989), 87134.CrossRefGoogle Scholar