Published online by Cambridge University Press: 24 October 2008
In [10], Mazur showed that the p-adic lifts of a given absolutely irreducible representation are parametrized by a universal deformation ξ:Gℚ, S → GL2() where has the form . (Here Gℚ, S is the Galois group over ℚ of a maximal algebraic extension unramified outside a finite set S of rational primes.) In [1, 3, 10], situations were investigated where the universal deformation ring turned out to be ℚp[[T1T2, T3]] (i.e. r = 3, I = (0)). In [2], the tame relation of algebraic number theory led to more complicated universal deformation rings, ones whose prime spectra consist essentially of four-dimensional sheets.