Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T08:36:00.688Z Has data issue: false hasContentIssue false

Representations of Homotopy Lie–Rinehart Algebras

Published online by Cambridge University Press:  04 December 2014

LUCA VITAGLIANO*
Affiliation:
DipMat, Università degli Studi di Salerno, & Istituto Nazionale di Fisica Nucleare, GC Salerno, Via Giovanni Paolo II n° 123, 84084 Fisciano (SA), Italy. e-mail: [email protected]

Abstract

I propose a definition of left/right connection along a strong homotopy Lie–Rinehart algebra. This allows me to generalise simultaneously representations up to homotopy of Lie algebroids and actions of L algebras on graded manifolds. I also discuss the Schouten-Nijenhuis calculus associated to strong homotopy Lie–Rinehart connections.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abad, C. A. and Crainic, M.Representations up to homotopy of Lie algebroids. J. Reine Angew. Math. 663 (2012), 91126; e-print: arXiv:0901.0319.Google Scholar
[2]Bashkirov, D. and Voronov, A. A. The BV formalism for L -algebras; e-print: arXiv:1410.6432.Google Scholar
[3]Bering, K., Damgaard, P. H. and Alfaro, J.Algebra of higher antibrackets. Nuclear Phys. B478 (1996), 459503; e-print: arXiv:hep-th/9604027.CrossRefGoogle Scholar
[4]Bonavolontà, G. and Poncin, N.On the category of Lie n-algebroids. J. Geom. Phys. 73 (2013), 7090; e-print: arXiv:1207.3590.CrossRefGoogle Scholar
[5]Braun, C. and Lazarev, A.Homotopy BV algebras in Poisson geometry. Trans. Moscow Math. Soc. 74 (2013), 217227; e-print: arXiv:1304.6373.CrossRefGoogle Scholar
[6]Bruce, A. J.From L -algebroids to higher Schouten/Poisson structures. Rep. Math. Phys. 67 (2011), 157177; e-print: arXiv:1007.1389.CrossRefGoogle Scholar
[7]Cattaneo, A. and Felder, G.Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math. 208 (2007), 521548; e-print: arXiv:math/0501540.CrossRefGoogle Scholar
[8]Crainic, M. Chern characters via connections up to homotopy; e-print: arXiv:math/0009229.Google Scholar
[9]Crainic, M. and Moerdijk, I.Deformations of Lie brackets: cohomological aspects. JEMS 10 (2008), 10371059; e-print: arXiv:math/0403434.CrossRefGoogle Scholar
[10]Cattaneo, A. S. and Schätz, F.Introduction to supergeometry. Rev. Math. Phys. 23 (2011), 669690; e-print: arXiv:1011.3401.CrossRefGoogle Scholar
[11]Evens, S., Lu, J.-H. and Weinstein, A.Transverse measures, the modular class and a cohomology pairing for Lie algebroids. Quart. J. Math. Oxford Ser. 50 (1999), 417436; e-print:arXiv:dg-ga/9610008.CrossRefGoogle Scholar
[12]Galvez-Carrillo, I., Tonks, A. and Vallette, B.Homotopy Batalin–Vilkovisky algebras. J. Noncommut. Geom. 6 (2012), 539602; e-print: arXiv:0907.2246.CrossRefGoogle Scholar
[13]Gerstenhaber, M.The cohomology structure of an associative ring. Ann. Math. 78 (1963), 267288.CrossRefGoogle Scholar
[14]Higgins, P. J. and Mackenzie, K. C. H.Algebraic constructions in the category of Lie algebroids. J. Algebra 129 (1990), 194230.CrossRefGoogle Scholar
[15]Huebschmann, J.Poisson cohomology and quantization. J. Reine Angew. Math. 408 (1990), 57113; e-print: arXiv:1303.3903.Google Scholar
[16]Huebschmann, J.Lie–Rinehart algebras, Gerstenhaber algebras and Batalin–Vilkovisky algebras. Ann. Inst. Fourier 48 (1998), 425440; e-print: arXiv:dg-ga/9704005.CrossRefGoogle Scholar
[17]Huebschmann, J.Duality for Lie–Rinehart algebras and the modular class. J. Reine Angew. Math. 510 (1999), 103159; e-Print: arXiv:dg-ga/9702008.CrossRefGoogle Scholar
[18]Huebschmann, J.Lie–Rinehart algebras, descent and quantisation, in: Galois theory, Hopf algebras and semiabelian categories (Janelidze, G., Pareigis, B. and Tholen, W., eds.) Fields Inst. Commun. 43 (2004), 295316; e-print: arXiv:math/0303016.Google Scholar
[19]Huebschmann, J.Higher homotopies and Maurer–Cartan algebras: quasi–Lie–Rinehart, Gerstenhaber and Batalin–Vilkovisky algebras. in: The breadth of symplectic and Poisson geometry. Progr. Math. 232 (2005), 237302; e-print: arXiv: math/0311294.CrossRefGoogle Scholar
[20]Huebschmann, J. Multi derivation Maurer–Cartan algebras and sh-Lie–Rinehart algebras. e-print: arXiv:1303.4665.Google Scholar
[21]Kjeseth, L.Homotopy Rinehart cohomology of homotopy Lie–Rinehart pairs. Homol. Homot. Appl. 3 (2001), 139163.CrossRefGoogle Scholar
[22]Kjeseth, L.A Homotopy Lie–Rinehart resolution and classical BRST cohomology. Homol. Homot. Appl. 3 (2001), 165192.CrossRefGoogle Scholar
[23]Kosmann, Y.On Lie transformation groups and the covariance of differential operators, in: Differential Geometry and Relativity (Cahen, M. and Flato, M., eds.), Math. Phys. Appl. Math. 3 (1976), 7589.Google Scholar
[24]Kosmann-Schwarzbach, Y. and Mackenzie, K. C. H.Differential operators and actions of Lie algebroids. in Quantisation, Poisson Brackets and Beyond (Voronov, T., ed.), Contemp. Math. vol. 315 (Amer. Math. Soc., Providence, RI, 2002) pp. 213233; e-print: arXiv:math/0209337.CrossRefGoogle Scholar
[25]Koszul, J.-L. Crochet de Schouten–Nijenhuis et cohomologie. Astérisque, hors série (1985), 257–271.Google Scholar
[26]Kotov, A. and Strobl, T. Characteristic classes associated to Q-bundles. e-print: arXiv:0711.4106.Google Scholar
[27]Kowalzig, N. and Krähmer, U. Batalin–Vilkovsky structures on Ext and Tor. J. Reine Angew. Math. (2012), published online: DOI: 10.1515/crelle-2012-0086; e-print: arXiv:1203.4984.CrossRefGoogle Scholar
[28]Krasil'shchik, I. S.Calculus over commutative algebras: a concise user's guide. Acta Appl. Math. 49 (1997), 235248.CrossRefGoogle Scholar
[29]Krasil'shchik, I. S. and Verbovetsky, A. M. Homological methods in equation of mathematical physics. Advanced Texts in Mathematics. (Open Education & Sciences, Opava, 1998), Sections 1.6–1.7; e-print: arXiv:math/9808130.Google Scholar
[30]Kravchenko, O.Deformations of Batalin–Vilkovisky algebras, in: Poisson geometry 1998 (Grabowski, J., and Urbanski, P., eds.), vol. 51 of Banach Center Publ. (Polish Acad. Sci., Warsaw, 2000), pp. 131139; e-print: arXiv:math/9903191.Google Scholar
[31]Lada, T. and Markl, M.Strongly homotopy Lie algebras. Comm. Algebra 23 (1996), 21472161; e-print: arXiv:hep-th/9406095.CrossRefGoogle Scholar
[32]Lada, T. and Stasheff, J.Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32 (1993), 10871103; e-print: arXiv:hep-th/9209099.CrossRefGoogle Scholar
[33]Loday, J.-L.Cyclic Homology. Grundlehren Math. Wiss. Vol. 301. (Springer-Verlag, Berlin, 1992), Section 10⋅1.Google Scholar
[34]Manin, Yu. I. and Penkov, I. B.The formalism of left and right connections on supermanifolds. in: Lectures on supermanifolds, geometrical methods and conformal groups (Doebner, H.-D., Hennig, J. D., and Palev, T. D., eds.) (World Scientific Publishing Co. Inc., Teaneck, NJ, 1989), pp. 313.Google Scholar
[35]Mehta, R. A. Supergroupoids, double structures, and equivariant cohomology. PhD. thesis. University of California, Berkeley (2006); e-print: arXiv:math.DG/0605356.Google Scholar
[36]Mehta, R. A. and Zambon, M.L -algebra actions. Diff. Geom. Appl. 30 (2012), 576587; e-print: arXiv:1202.2607.CrossRefGoogle Scholar
[37]Oh, Y.-G. and Park, J.-S.Deformations of coisotropic submanifolds and strong homotopy Lie algebroids. Invent. Math. 161 (2005), 287360; e-print: arXiv:math/0305292.CrossRefGoogle Scholar
[38]Penkov, I. B.$\mathcal{D}$-modules on supermanifolds. Invent. Math. 71 (1983), 501512.CrossRefGoogle Scholar
[39]Rinehart, G.Differential forms for general commutative algebras. Trans. Amer. Math. Soc. 108 (1963), 195222.CrossRefGoogle Scholar
[40]Sati, H., Schreiber, U. and Stasheff, J.Twisted differential string and fivebrane structures. Commun. Math. Phys. 315 (2012), 169213, Appendix A; e-print: arXiv:0910.4001.CrossRefGoogle Scholar
[41]Schätz, F.BFV-complex and higher homotopy structures. Commun. Math. Phys. 286 (2009), 399443; e-print: arXiv:math/0611912.CrossRefGoogle Scholar
[42]Schneiders, J.-P.An introduction to $\mathcal{D}$-modules. Bull. Soc. Roy. Sci. Liège 63 (1994), 223295.Google Scholar
[43]Sheng, Y. and Zhu, C. Higher extensions of Lie algebroids and applications to Courant algebroids. e-print: arXiv:11035920.Google Scholar
[44]Tulczyjew, W.Hamiltonian systems, Lagrangian systems and the Legendre transformation. Symposia Math. 14 (1974), 101114.Google Scholar
[45]Uchino, K.Derived brackets and sh Leibniz algebras. J. Pure Appl. Algebra 215 (2011), 11021111; e-print: arXiv:0902.0044.CrossRefGoogle Scholar
[46]Vitagliano, L.On the strong homotopy Lie-Rinehart algebra of a foliation. Commun. Contemp. Math. 16 (2014) 1450007 (49 pages); e-print: arXiv:1204.2467.CrossRefGoogle Scholar
[47]Vitagliano, L. On the strong homotopy associative algebra of a foliation. Commun. Contemp. Math. (2014), 1450026 (34 pages), in press. doi: 10.1142/S0219199714500266; e-print: arXiv:1212.1090.CrossRefGoogle Scholar
[48]Vaisman, I.The BV-algebra of a Jacobi manifold. Ann. Polon. Math. 73 (2000), 275290; e-print: arXiv:math.DG/9904112.CrossRefGoogle Scholar
[49]Voronov, A.Homotopy Gerstenhaber Algebras, in: Conference Moshe Flato 1999 (Dito, G. and Sternheimer, D., eds.), vol. 2 (Kluwer Academic Publishers, the Netherlands, 2000), pp. 307331; e-print: arXiv:math/9908040.Google Scholar
[50]Voronov, T.Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202 (2005), 133153; e-print: arXiv:math/0304038.CrossRefGoogle Scholar
[51]Xu, P.Gerstenhaber algebras and BV-algebras in Poisson geometry. Comm. Math. Phys. 200 (1999), 545560; e-print: arXiv:dg-ga/9703001.CrossRefGoogle Scholar
[52]Yu, S. Dolbeault dga of formal neighbourhoods and L -algebroids., Poster presented at AGNES 2011, Stony Brook, NY, 2011, url: http://www.math.psu.edu/yu/slides/poster.pdf.Google Scholar