Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:43:24.506Z Has data issue: false hasContentIssue false

A remark on metrically convergent series in F-spaces*

Published online by Cambridge University Press:  24 October 2008

H. M. Charsky
Affiliation:
Israel Institute of Technology

Extract

Let X be an F-space, not necessarily locally convex, with a quasi-norm ‖x‖ (see (7), p. 31). The series

of elements of X is commutatively convergent if and only if converges for every permutation {Yn}nεω of {Xn}nεω.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bourbaki, N.Elements of mathematics, General topology, Part 1 (Hermann and Addison-Wesley, 1966).Google Scholar
(2)Dunford, N. and Schwartz, J. T.Linear operators, Part 1, General theory (Interscience Publishers, Inc. 1958).Google Scholar
(3)Dvoretzky, A.On series in linear topological spaces. Israel J. Math. 1 (1963), 3747.CrossRefGoogle Scholar
(4)Dvoretzky, A. and Rogers, C. A.Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192197.CrossRefGoogle ScholarPubMed
(5)Rolewicz, S.On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 5 (1957), 471473.Google Scholar
(6)Rolewicz, S.On a generalization of the Dvoretzky–Rogers theorem. Colloq. Math. VIII, 1 (1961), 103106.Google Scholar
(7)Yosida, K.Functional analysis (Springer Verlag, 1965).Google Scholar