Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T14:12:45.062Z Has data issue: false hasContentIssue false

Refractive index profiles based on the hypergeometric equation and the confluent hypergeometric equation

Published online by Cambridge University Press:  24 October 2008

John Heading
Affiliation:
University of Southampton

Abstract

Isotropic ionospheric propagation of electromagnetic waves yields refractive index profiles via the standard transcendental equations. Some transformations of these equations have long been regarded as standard. Here, every possible transformation is derived by a systematic analysis, yielding all possible refractive index profiles satisfying certain stated criteria regarding the wave frequency.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Brekhovsktkh, L. M. Waves in layered media (Academic Press; New York, 1960).Google Scholar
2 Budden, K. G. Radio waves in the ionosphere (Cambridge, 1961).Google Scholar
3 Burman, R. and Gould, R. N. J. Atmos. Terr. Phys. 26 (1964), 11271129.CrossRefGoogle Scholar
4 Epstein, P. S. Proc. Nat. Acad. Sci. Washington 16 (1930), 627637.CrossRefGoogle Scholar
5 Försterling, K. and Wüster, H. O. Ann. der Phys. (6) 8 (1950), 129133.CrossRefGoogle Scholar
6 Försterling, K. and Wüster, H. O. J. Atmos. Terr. Phys. 2 (1951), 2231.CrossRefGoogle Scholar
7 Ginrzburg, V. L. The propagation of electromagnetic waves in plasmas (Pergamon Press; Oxford, 1964).Google Scholar
8 Rawer, K. Ann. Physik (5) 35 (1939), 385416.CrossRefGoogle Scholar
9 Wait, J. R. Electromagnetic waves in stratified media (Pergamon Press; Oxford, 1962).Google Scholar