Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T23:09:46.078Z Has data issue: false hasContentIssue false

Records, permutations and greatest convex minorants

Published online by Cambridge University Press:  24 October 2008

Charles M. Goldie
Affiliation:
Mathematics Division, University of Sussex, Brighton BN1 9QH*

Abstract

Theorems on random permutations are translated into distribution-free results about record times and greatest convex minorants, by defining them together on appropriate probability spaces. The Bernoulli random variables that appear in the standard representation of the number of sides of the greatest convex minorant of a random walk are identified.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aldous, D. J.. Exchangeability and related topics. In Ecole d'Eté de Probabilités de Saint-Flour XII—1983 (ed. Hennequin, P. L.), Lecture Notes in Math. vol. 1117 (Springer-Verlag, 1985), PP. 1198.Google Scholar
[2]Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D.. Statistical Inference under Order Restrictions (Wiley, 1972).Google Scholar
[3]Bass, R. F.. Markov processes and convex minorants. In Séminaire de Probabilités XVIII (1982/83) (ed. Azéma, J., Yor, M.). Lecture Notes in Math. vol. 1059 (Springer-Verlag, 1984), pp. 2941.Google Scholar
[4]Best, M. R.. The distribution of some variables on symmetric groups. Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 (1970), 385402.CrossRefGoogle Scholar
[5]Bingham, N. H.. Tauberian theorems for Jakimovski and Karamata–Stirling methods. Mathematika 35 (1988), 216224.Google Scholar
[6]Brunk, H. D.. A generalization of Spitzer's combinatorial lemma. Z. Wahrsch. verw. Gebiete 2 (1964), 395405.Google Scholar
[7]Feller, W.. An Introduction to Probability Theory and its Applications, vol. 1, 3rd edition (Wiley, 1968).Google Scholar
[8]Foster, F. C. and Stuart, A.. Distribution-free tests in time series based on the breaking of records. J. Roy. Statist. Soc. Ser. B 16 (1954), 113.Google Scholar
[9]Groeneboom, P.. The concave majorant of Brownian motion. Ann. Probab. 11 (1983), 10161027.Google Scholar
[10]Joyce, P. and Tavaré, S.. Cycles, permutations and the structure of the Yule process with immigration. Stochastic Process. Appl. 25 (1987), 309314.Google Scholar
[11]Karamata, J.. Théorèmes sur la sommabilité exponentielle et d'autre sommabilités s'y rattachant. Mathematika (Cluj) 9 (1935), 164178.Google Scholar
[12]Leurgans, S.. Asymptotic distributions of slope-of-greatest-convex-minorant estimators. Ann. Statist. 10 (1982), 287296.Google Scholar
[13]Lovász, L.. Combinatorial Problems and Exercises (North-Holland, 1979).Google Scholar
[14]Pfeifer, D.. Extremal processes, record times and strong approximation. Publ. Inst. Statist. Univ. Paris 31 (1986), 4765.Google Scholar
[15]Pitman, J. W.. Remarks on the convex minorant of Brownian motion. In Seminar on Stochastic Processes, 1982 (ed. Çinlar, E., Chung, K. L., Getoor, R. K.), Progress in Probab. Statist. vol. 5 (Birkhäuser, 1983), pp. 219227.CrossRefGoogle Scholar
[16]Rényi, C. and Rényi, A.. The Prüfer code for k-trees. In Combinatorial Theory and its Applications (ed. Erdős, P., Rényi, A., Sós, V. T.) vol. 3, Colloq. Math. Soc. János Bolyai, vol. 4 (North-Holland, 1970), pp. 945971.Google Scholar
[17]Resnick, S. T.. Extreme Values, Regular Variation and Point Processes (Springer-Verlag, 1987).Google Scholar
[18]Andersen, E. Sparre. On the fluctuations of sums of random variables. Math. Scand. 1 (1953). 263285.CrossRefGoogle Scholar
[19]Stam, A. J.. Cycles of random permutations. Ars Combin. 16 (1983). 4348.Google Scholar
[20]Vershik, A. M. and Shmidt, A. A.. Limit measures arising in the asymptotic theory of symmetric groups, I. Theory Probab. Appl. 22 (1977). 7085.Google Scholar