No CrossRef data available.
Quasifree representations of Clifford algebras
Published online by Cambridge University Press: 24 October 2008
Extract
Let V be an infinite-dimensional real Hilbert space with associated C* Clifford algebra C[V]. To any state σ of the C* algebra C[V] there corresponds a skew-adjoint operator C of norm at most unity on V such that
we refer to C as the covariance of the state σ.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 113 , Issue 3 , May 1993 , pp. 487 - 497
- Copyright
- Copyright © Cambridge Philosophical Society 1993
References
REFERENCES
[1]Araki, H.. On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst.Math. Sci. 6 (1970/1901), 386–442.CrossRefGoogle Scholar
[2]Araki, H.. Bogoliubov automorphisms and Fock representations of canonical anti-commutation relations. In Operator Algebras and Mathematical Physics, Contemporary Math. no. 62 (American Mathematical Society, 1987), pp. 23–141.CrossRefGoogle Scholar
[3]Balslev, E., Manuceau, J. and Verbeure, A.. Representations of anticommutation relations. Comm. Math. Phys. 8 (1968), 315–326.CrossRefGoogle Scholar
[4]Bratteli, O. and Robinson, D. W.. Operator Algebras and Quantum Statistical Mechanics II. Texts and Monographs in Physics (Springer-Verlag, 1981).CrossRefGoogle Scholar
[5]De La Harpe, P. and Plymen, R. J.. Automorphic group representations: a new proof of Blattner's theorem. J. London Math. Soc. (2) 19 (1979), 509–522.CrossRefGoogle Scholar
[6]Hannabuss, K. C.. KMS states for reduced groups, theta functions and the Powers–Størmer construction. Math. Proc. Cambridge Philos. Soc. 105 (1989), 397–410.CrossRefGoogle Scholar
[7]Shale, D. and Stinespring, W. F.. States of the Clifford algebra. Ann. of Math. 80 (1964), 365–381.CrossRefGoogle Scholar
[8]van Daele, A.. Quasi-equivalence of quasi-free states on the Weyl algebra. Comm. Math. Phys. 21 (1971), 171–191.CrossRefGoogle Scholar