Published online by Cambridge University Press: 24 October 2008
In this note (cf. sections 3, 4) I shall give an axiomatization of those fields (of characteristic ≠ 2) which have a theory of quadratic forms like the -adic numbers or like the real numbers. This leads then, for instance, to a generalization of the well-known theorems on -adic forms to a wider class of fields, including non-local ones. The main purpose of the exercise is, however, to separate out the roles of the arithmetic in the underlying field, on the one hand, which solely enters into the verification of the axioms, and of the ordinary algebra of quadratic forms on the other hand. The resulting clarification of the structure of the theory is of interest even in the known -adic case.