Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T20:33:02.075Z Has data issue: false hasContentIssue false

Pseudoprime reductions of elliptic curves

Published online by Cambridge University Press:  01 May 2009

ALINA CARMEN COJOCARU
Affiliation:
Dept. of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60607-7045, U.S.A. and The Institute of Mathematics of the Romanian Academy, Bucharest, Romania. e-mail: [email protected]
FLORIAN LUCA
Affiliation:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México. e-mail: [email protected]
IGOR E. SHPARLINSKI
Affiliation:
Dept. of Computing, Macquarie University, Sydney, NSW 2109, Australia. e-mail: [email protected]

Abstract

Let b ≥ 2 be an integer and let E/ be a fixed elliptic curve. In this paper, we estimate the number of primes px such that the number of points nE(p) on the reduction of E modulo p is a base b prime or pseudoprime. In particular, we improve previously known bounds which applied only to prime values of nE(p).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BaKaWi]Bassily, N. L., Kátai, I. and Wijsmuller, M.. On the prime power divisors of the iterates of the Euler-ϕ function. Publ. Math. Debrecen 55 (1999), 1732.CrossRefGoogle Scholar
[CrPo]Crandall, R. and Pomerance, C.. Prime Numbers: A Computational Perspective. (Springer-Verlag, 2005).Google Scholar
[Co]Cojocaru, A. C.. Reductions of an elliptic curve with almost prime orders. Acta Arith. 119 (2005), 265289.CrossRefGoogle Scholar
[CoFoMu]Cojocaru, A. C., Fouvry, É. and Murty, M. R.. The square sieve and the Lang–Trotter conjecture. Canadian J. Math. 57 (2005), 11551177.CrossRefGoogle Scholar
[FoIw]Fouvry, É. and Iwaniec, H.. Gaussian primes. Acta Arith. 79 (1997), 249287.CrossRefGoogle Scholar
[HaWr]Hardy, G. H. and Wright, E. M.. An Introduction to the Theory of Numbers. (Oxford University Press, 1979).Google Scholar
[Iv]Ivić, A.. The Riemann Zeta-Function. Theory and Applications. (Dover Publications, Inc., 2003).Google Scholar
[LaOd]Lagarias, J. C. and Odlyzko, A. M.. Effective versions of the Chebotarev density theorem. Algebraic Number Fields (Academic Press, 1977), 409–464.Google Scholar
[LuSh1]Luca, F. and Shparlinski, I. E.. Pseudoprime values of the Fibonacci sequence, polynomials and the Euler function. Indag. Math. 17 (2006), 611625.CrossRefGoogle Scholar
[LuSh2]Luca, F. and Shparlinski, I. E.. Pseudoprime Cullen and Woodall numbers. Colloq. Math. 107 (2007), 3543.CrossRefGoogle Scholar
[PoRo]van der Poorten, A. J. and Rotkiewicz, A.. On strong pseudoprimes in arithmetic progressions. J. Austral. Math. Soc. Ser. A 29 (1980), 316321.CrossRefGoogle Scholar