Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T23:31:36.520Z Has data issue: false hasContentIssue false

Proper pointed maps from ℝn+1 to a σ-compact space

Published online by Cambridge University Press:  24 October 2008

Luis J. Hernandez
Affiliation:
Department of Geometry and Topology, Facultad de Ciencias, 50009 Zaragosa, Spain
Timothy Porter
Affiliation:
Department of Pure Mathematics, University College of North Wales, Bangor, Wales

Abstract

In this paper we study the group of pointed proper homotopy classes of proper pointed maps from (ℝn+1, 0) to a pointed σ-compact space (X, x) and prove the existence of a diagram of exact sequences linking the groups with the Brown—Grossman groups , the Steenrod groups πn(X) and the classical Hurewicz homotopy groups πn(X).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brin, M. G. and Thickstun, T. L.. On proper Steenrod homotopy groups and proper embeddings of planes into 3-manifolds. Trans. Amer. Math. Soc. 289 (1985), 737755.CrossRefGoogle Scholar
[2]Brown, E. M.. On the proper homotopy type of simplicial complexes. In Topology Conference, Lecture Notes in Math. vol. 375 (Springer-Verlag, 1975).CrossRefGoogle Scholar
[3]Brown, R.. Some non-abelian methods in homotopy theory and homological algebra. In Categorical Topology (Heldermann Verlag, 1984), pp. 108146.Google Scholar
[4]Cordier, J.-M. and Porter, T.. Vogt's theorem on categories of homotopy coherent diagrams. Math. Proc. Cambridge Philos. Soc. 100 (1986), 6590.CrossRefGoogle Scholar
[5]Cordier, J.-M. and Porter, T.. Homotopy limits and homotopy coherence. (Lectures given at Perugia, 1984.)Google Scholar
[6]Edwards, D. A. and Hastings, H. M.. Čech and Steenrod homotopy theories with applications to geometric topology. Lecture Notes in Math. vol. 542 (Springer-Verlag, 1976).CrossRefGoogle Scholar
[7]Grossman, J. W.. Homotopy groups of prospaces. Illinois J. Math. 20 (1976), 612625.CrossRefGoogle Scholar
[8]Hernandez, L. J., Rivas Rodriguez, M. T. and Extremiana Aldana, J. I.. Unas notas sobre las equivalencias de homotopia propria. Preprint.Google Scholar
[9]Hernandez, L. J.. A note on proper homology and homotopy groups. Preprint.Google Scholar
[10]Porter, T.. Coherent prohomotopy theory. Cahiers Topologie Geom. Differentielle Catégoriques 19 (1978), 346.Google Scholar
[11]Porter, T.. Čech and Steenrod homotopy and the Quigley exact couple in strong shape and proper homotopy theory. J. Pure Appl. Alg. 24 (1983), 303312.CrossRefGoogle Scholar
[12]Porter, T.. Homotopy groups for strong shape and proper homotopy. Rend. Circ. Mat. Palermo (2) 4 (1984), 101113.Google Scholar
[13]Porter, T.. Proper homotopy, prohomotopy and coherence. Publ. Sem. Mat. García de Galdeano, Ser. II 10 (1987).Google Scholar
[14]Porter, T.. On the two definitions of Ho (proC). Topology Appl., to appear.Google Scholar
[15]Quigley, J. B.. An exact sequence from the nth to the (n–1)st fundamental groups. Fund. Math. 77 (1973), 195210.CrossRefGoogle Scholar