Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T21:28:26.122Z Has data issue: false hasContentIssue false

Proof of a theorem of Paley

Published online by Cambridge University Press:  24 October 2008

A. Zygmund
Affiliation:
Wilno

Extract

1. Let f(x) be a real function of period 2π, integrable L over (0, 2π), and let

By sn(x) and σn (x) we denote respectively the partial sums and the first arithmetic means of the series (1·1). Similarly, by and we denote the partial sums and the first arithmetic means of the series

conjugate to (1·1). By we mean the function conjugate to f(x), that is

where the integral is taken in the principal-value sense.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Khintchine, A.Über dyadische Brüche”, Math. Zeitschrift, 18 (1923), 109–16.CrossRefGoogle Scholar
(2)Kolmogoroff, A.Une série de Fourier-Lebesgue divergente presque partout”, Fund. Math. 4 (1923), 324–8.CrossRefGoogle Scholar
(3)Kolmogoroff, A.Une contribution à l'étude de la convergence des séries de Fourier”, Fund. Math. 5 (1924), 96–7.CrossRefGoogle Scholar
(4)Hardy, G. H., Littlewood, J. E. and Pólya, G.Inequalities (Cambridge, 1934).Google Scholar
(5)Littlewood, J. E. and Paley, R. E. A. C.Theorems on Fourier series and power series, II”, Proc. London Math. Soc. 42 (1937), 5289.CrossRefGoogle Scholar
(6)Riesz, M.Sur les séries conjuguées”, Math. Zeitschrift, 27 (1927), 218–44.Google Scholar
(7)Zygmund, A.Trigonometrical series (Warsaw, 1935).Google Scholar
(8)Zygmund, A.Sur le caractère de divergence des séries de Fourier”, Mathematica, 9 (1935), 86–8.Google Scholar