Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T19:43:32.785Z Has data issue: false hasContentIssue false

Probabilistic proofs of asymptotic formulas for some classical polynomials

Published online by Cambridge University Press:  24 October 2008

Makoto Maejima
Affiliation:
Department of Mathematics, Keio University, Yokohama 223, Japan
Walter Van Assche
Affiliation:
Departement Wiskunde, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium

Extract

Recently Stadje [9] gave asymptotic formulas for some Bessel functions by using a probabilistic argument: some Bessel functions can be represented by the probability distribution of partial sums of symmetrized independent and identically distributed random variables (Feller [4], p. 149). Stadje used this idea and the local limit theorem, which is well known in probability theory.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Chihara, T. S.. An Introduction to Orthogonal Polynomials (Gordon & Breach, 1978).Google Scholar
[2]Erdélyi, A.. Asymptotic forms for Laguerre polynomials. J. Indian Math. Soc. 24 (1960), 235250.Google Scholar
[3]Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.. Higher Transcendental Functions, vol. II (McGraw-Hill, 1953).Google Scholar
[4]Feller, W.. An Introduction to Probability Theory and its Applications, vol. II, 2nd ed. (Wiley, 1971).Google Scholar
[5]Moecklin, E.. Asymptotische Entwicklungen der Laguerreschen Polynome. Comment. Math. Helv. 7 (1934), 2446.Google Scholar
[6]Petrov, V. V.. Sums of Independent Random Variables (Springer, 1975).Google Scholar
[7]Plancherel, M. and Rotach, W.. Sur les valeurs asymptotiques des polynomes d'Hermite. Comment. Math. Helv. 1 (1929), 227254.Google Scholar
[8]Riordan, J.. An Introduction to Combinatorial Analysis (Wiley, 1958).Google Scholar
[9]Stadje, W.. Probabilistic proofs of some formulae for Bessel functions. Indag. Math. 45 (1983), 343359.Google Scholar
[10]Szegö, G.. Orthogonal Polynomials. Amer. Math. Soc. Coll. Publ. 23 (1939).Google Scholar
[11]Taylor, W. C.. A complete set of asymptotic formulas for the Whittaker function and the Laguerre polynomials. J. Math. Phys. (M.I.T.) 18 (1939), 3449.Google Scholar